若直線y=x+b與曲線y=
4-x2
有兩個(gè)交點(diǎn),則實(shí)數(shù)b的取值范圍是(  )
A、(2,2
2
B、[2,2
2
C、(-2,2
2
D、(-2
2
,2
2
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:曲線y=
4-x2
表示以原點(diǎn)為圓心,2為半徑的圓,在x軸上邊的部分,結(jié)合圖形,即可求出實(shí)數(shù)b的取值范圍.
解答: 解:曲線y=
4-x2
表示以原點(diǎn)為圓心,2為半徑的圓,在x軸上邊的部分,
如圖所示,當(dāng)直線與半圓相切時(shí),b=2
2

∴直線y=x+b與曲線y=
4-x2
有兩個(gè)交點(diǎn),實(shí)數(shù)b的取值范圍是[2,2
2
).
故選:B.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x-ay+2=0(a<0)的傾斜角是( 。
A、arctan
1
a
B、-arctan
1
a
C、π-arctan
1
a
D、π+arctan
1
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=-3”是“圓x2+y2=1與圓(x+a)2+y2=4相切”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
4
+
y2
a2
=1和雙曲線
x2
a2
-
y2
b2
=1有共同的焦點(diǎn),連接橢圓的焦點(diǎn)和短軸的一個(gè)端點(diǎn)所得直線和雙曲線的一條漸近線平行,設(shè)雙曲線的離心率為e,則e2等于( 。
A、
5
+1
2
B、
3
+1
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,b>0,則
a+b
2
ab
,
2ab
a+b
a2+b2
2
的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)關(guān)于x的函數(shù)f(x)=(a1+1)x+(a2+1)x2+…+(an+1)xn,求函數(shù)f(x)在點(diǎn)x=1處的導(dǎo)致f′(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知拋物線C:y2=2px(p>0),直線l的參數(shù)方程:
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)).寫出拋物線C的極坐標(biāo)方程和直線l的普通方程
 
、
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求不等式|x-2|-|x-1|>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
cx+1(0<x<c)
2-
x
c2
+1(c≤x<1)
滿足f(c2)=
9
8

(1)求常數(shù)c的值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案