【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周長為5,求b的長.

【答案】
(1)解:因為 所以

即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA

所以sin(A+B)=2sin(B+C),即sinC=2sinA

所以 =2


(2)解:由(1)可知c=2a…①

a+b+c=5…②

b2=a2+c2﹣2accosB…③

cosB= …④

解①②③④可得a=1,b=c=2;

所以b=2


【解析】(1)利用正弦定理化簡等式的右邊,然后整理,利用兩角和的正弦函數(shù)求出 的值.(2)利用(1)可知c=2a,結合余弦定理,三角形的周長,即可求出b的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人上午7時,乘摩托艇以勻速vkm/h(8≤v≤40)從A港出發(fā)到距100km的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛去.應該在同一天下午4至9點到達C市. 設乘坐汽車、摩托艇去目的地所需要的時間分別是xh,yh.
(1)作圖表示滿足上述條件的x,y范圍;
(2)如果已知所需的經費p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分別是多少時p最?此時需花費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于平面向量 , ,有下列三個命題:
①若 = ,則 =
②若 =(1,k), =(﹣2,6), ,則k=﹣3.
③非零向量 滿足| |=| |=| |,則 + 的夾角為60°.
其中真命題的序號為 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是棱形, 平面, ,點、分別為中點,連接 .

(1)求證:直線平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),且f(1)=
(1)當n∈N*時,求f(n)的表達式;
(2)設an=nf(n),n∈N* , 求證a1+a2+a3+…+an<2;
(3)設bn=(9﹣n) ,n∈N* , Sn為bn的前n項和,當Sn最大時,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 ),從上的點軸的垂線,交于點,再從點軸的垂線,交于點.設, , .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)記,數(shù)列的前項和為,求證: ;

(Ⅲ)若已知),記數(shù)列的前項和為,數(shù)列的前項和為,試比較的大小.

查看答案和解析>>

同步練習冊答案