(2012•濟(jì)寧一模)給出下列命題:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命題“若am2<bm2,則a<b”的逆命題是真命題;
③f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時(shí)的解析式是f(x)=2*.則x<0時(shí)的解析式為f(x)=-2-x;
④若隨機(jī)變量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號(hào)是
①③④
①③④
.(寫出所有你認(rèn)為正確命題的序號(hào))
分析:①所給的命題是一個(gè)特稱命題,特稱命題的否定是全稱命題,依據(jù)規(guī)則寫出結(jié)論即可,得到①正確;
②通過舉反例判斷出②不正確;
③設(shè)x<0,則-x>0,利用函數(shù)是奇函數(shù),結(jié)合已知的解析式,即可得到結(jié)論;
④利用正態(tài)分布曲線的對(duì)稱性,即可得到結(jié)論.
解答:解:對(duì)于①,它是一個(gè)含有量詞的命題,“?x∈R,x2-x>0”即“存在x∈R,使得x2-x>0成立”,其否定應(yīng)該是不存在滿足條件的x,也就是說,對(duì)于任意的x∈R,都有x2-x≤0,即“?x∈R,x2-x≤0”,故①正確;
對(duì)于②,“若am2<bm2,則a<b”的逆命題為“若a<b,則am2<bm2,當(dāng)m=0時(shí)不成立,故為假命題,即②不正確;
對(duì)于③,設(shè)x<0,則-x>0,∴f(-x)=2-x,∵函數(shù)是(-∞,0)∪(0,+∞)上的奇函數(shù),∴f(x)=-f(x)=-2-x,即③正確;
對(duì)于④若隨機(jī)變量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=P(ξ≤0)=1-0.3=0.2,即④正確.
故答案為:①③④.
點(diǎn)評(píng):本題考查命題的否定、全稱命題、考查利用函數(shù)的奇偶性求函數(shù)的解析式,考查正態(tài)分布曲線的對(duì)稱性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)觀察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根據(jù)上述規(guī)律,第n個(gè)不等式應(yīng)該為
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)若等邊△ABC的邊長(zhǎng)為2
3
,平面內(nèi)一點(diǎn)M滿足
CM
=
1
3
CB
+
1
3
CA
,則
MA
MB
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)設(shè)全集U={x∈N*|x<6},集合A={1,3},B={3,5},則?U(A∪B)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)已知
2
x
+
8
y
=1,(x>0,y>0),則x+y的最小值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案