某產(chǎn)品有15只正品,5只次品,每次取1只測(cè)試,取后不放回,直到5只次品全部測(cè)出為止,求經(jīng)過(guò)10次測(cè)試,5只次品全部被發(fā)現(xiàn)的概率.

答案:
解析:

  思路  記A=“經(jīng)過(guò)10次測(cè)試,5只次品全被測(cè)出”

  思路  記A=“經(jīng)過(guò)10次測(cè)試,5只次品全被測(cè)出”.因?yàn)楫a(chǎn)品的測(cè)試與順序無(wú)關(guān),所以n=,m的計(jì)算可采用“定位法”,即將其中的4只次品安排在前9次測(cè)試,有種.5件正品安排在前9次中測(cè)試,有種.4只次品與5只正品混合排列數(shù)為.第10次測(cè)的是最后一個(gè)次品,所以m=·1.于是PA=

  解答  PA=

  評(píng)析  這是比較復(fù)雜的“摸球問(wèn)題”.(1)n與m的計(jì)算,要分清是排列問(wèn)題,還是組合問(wèn)題.這至關(guān)重要;(2)“定位法”是一種思維方式,要使4只次品在前9次測(cè)出,留一個(gè)第10次測(cè)出,這并非主觀(guān)意識(shí)決定,而是主觀(guān)與客觀(guān)實(shí)際相一致的思維模式.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案