精英家教網 > 高中數學 > 題目詳情
若集合A={x||x-2|≤3,x∈R},B={y|y=1-x2,y∈R},則A∩B=( )
A.[0,1]
B.[0,+∞)
C.[-1,1]
D.∅
【答案】分析:解絕對值不等式求出集合A,根據二次函數的值域求出B,依據交集的定義求出A∩B.
解答:解:集合A={x||x-2|≤3,x∈R}={x|-3≤x-2≤3}={x|-1≤x≤5}.
B={y|y=1-x2,y∈R}═{y|y≤1,y∈R},
故A∩B=[-1,1].
故選 C.
點評:本題考查絕對值不等式的解法,二次函數的值域的求法,兩個集合的交集的定義.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

記U=R,若集合A={x|3≤x<8},B={x|2<x≤6},則
(1)求A∩B,A∪B,?UA;
(2)若集合C={x|x≥a},A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若集合A={x||x|>1,x∈R},B={y|y=x2,x∈R},則(CRA)∩B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•東城區(qū)模擬)若集合A={x||x|>1},B={x|x≥0},全集U=R,則(?RA)∩B等于( 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=(  )
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步練習冊答案