(本小題滿分14分)
如圖5,在直角梯形ABCP中,AP//BC,APAB,AB=BC=,D是AP的中點,E,F(xiàn),G分別為PC、PD、CB的中點,將沿CD折起,使得平面ABCD, 如圖6.
(Ⅰ)求證:AP//平面EFG;
(Ⅱ) 求二面角的大。
(Ⅲ)求三棱椎的體積.
(本小題滿分14分)
.解:(Ⅰ) 證明:方法一)連AC,BD交于O點,連GO,FO,EO.
∵E,F分別為PC,PD的中點,∴//,同理//, //
四邊形EFOG是平行四邊形, 平面EFOG. ……3分
又在三角形PAC中,E,O分別為PC,AC的中點,PA//EO……4分
平面EFOG,PA平面EFOG, ……5分
PA//平面EFOG,即PA//平面EFG. ……6分
方法二) 連AC,BD交于O點,連GO,FO,EO.
∵E,F分別為PC,PD的中點,∴//,同理//
又//AB,//
平面EFG//平面PAB, ……4分
又PA平面PAB,平面EFG. ……6分
方法三)如圖以D為原點,以
為方向向量建立空間直角坐標系.
則有關點及向量的坐標為:
……2分
設平面EFG的法向量為
取.……4分
∵,……5分
又平面EFG. AP//平面EFG. ……6分
(Ⅱ)由已知底面ABCD是正方形
,又∵面ABCD
又平面PCD,
向量是平面PCD的一個法向量, =……8分
又由(Ⅰ)方法三)知平面EFG的法向量為……9分
……10分
結合圖知二面角的平面角為……11分
(Ⅲ) ……14分
科目:高中數(shù)學 來源:2014屆江西省高二第一次月考理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
在醫(yī)學生物學試驗中,經常以果蠅作為試驗對象.一個關有6只果蠅的籠子里,不慎混入了兩只蒼蠅(此時籠內共有8只蠅子:6只果蠅和2只蒼蠅),只好把籠子打開一個小孔,讓蠅子一只一只地往外飛,直到兩只蒼蠅都飛出,再關閉小孔.
(Ⅰ)求籠內恰好剩下1只果蠅的概率;
(Ⅱ)求籠內至少剩下5只果蠅的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
設函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)當時,不等式恒成立,求實數(shù)的取值范圍;
(3)關于的方程在上恰有兩個相異實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
已知(m為常數(shù),m>0且)
設是首項為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若bn=an·,且數(shù)列{bn}的前n項和Sn,當時,求Sn;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
已知定點和定直線,是定直線上的兩個動點且滿足,動點滿足,(其中為坐標原點).
(1)求動點的軌跡的方程;
(2)過點的直線與相交于兩點
①求的值;
②設,當三角形的面積時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com