設(shè)F1、F2是雙曲線的兩個(gè)焦點(diǎn),P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是( )
A.1 B. C.2 D.
A
【解析】
試題分析:設(shè)|PF1|=x,|PF2|=y,根據(jù)根據(jù)雙曲線性質(zhì)可知x-y的值,再根據(jù)∠F1PF2=90°,求得x2+y2的值,進(jìn)而根據(jù)2xy= -(x-y)求得xy,進(jìn)而可求得∴△F1PF2的面積. 解:設(shè)|PF1|=x,|PF2|=y,(x>y),根據(jù)雙曲線性質(zhì)可知x-y=4,∵∠F1PF2=90°,∴,∴2xy=-(x-y)=4,∴xy=2,∴△F1PF2的面積為 =1,故選A
考點(diǎn):雙曲線的簡單性質(zhì)
點(diǎn)評:本題主要考查了雙曲線的簡單性質(zhì).要靈活運(yùn)用雙曲線的定義及焦距、實(shí)軸、虛軸等之間的關(guān)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
PF1 |
PF2 |
PF1 |
PF2 |
a2+b2 |
A、
| ||||
B、
| ||||
C、2 | ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
y2 | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
3 |
PF1 |
PF2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
OP |
OF2 |
F2P |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com