雙曲線與橢圓=1有相同的焦點,它的一條漸近線為y=-x,則雙曲線方程為(    )

A.x2-y2=96             B.y2-x2=160            C.x2-y2=80         D.y2-x2=24

思路分析:由橢圓=1,得其焦點坐標為(0,-)、(0, ).

∴雙曲線的焦點在y軸上.

∵雙曲線的一條漸近線為y=-x,∴a=b.而c=,

∴a2+b2=()2,2a2=48.

∴a2=24,b2=24.∴雙曲線的方程為y2-x2=24.

答案:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•楊浦區(qū)二模)(理)設斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標原點,假設k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結論,并證明你的結論.
(3)分析(2)中的探究結果,并作出進一步概括,使上述結果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數(shù)學問題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學 來源:楊浦區(qū)二模 題型:解答題

(理)設斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標原點,假設k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結論,并證明你的結論.
(3)分析(2)中的探究結果,并作出進一步概括,使上述結果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數(shù)學問題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市楊浦區(qū)、靜安區(qū)高考數(shù)學二模試卷(文理合卷)(解析版) 題型:解答題

(理)設斜率為k1的直線L交橢圓C:于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標原點,假設k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
(a>b>0),其它條件不變,試猜想k1與k2關系(不需要證明).請你給出在雙曲線(a>0,b>0)中相類似的結論,并證明你的結論.
(3)分析(2)中的探究結果,并作出進一步概括,使上述結果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數(shù)學問題,并予以解決.

查看答案和解析>>

同步練習冊答案