已知圓x2+y2=2,直線l與圓O相切于第一象限,切點(diǎn)為C,并且與坐標(biāo)軸相交于點(diǎn)A、B,則當(dāng)線段AB最小時(shí),則直線AB方程為( 。
分析:設(shè)出直線AB的方程,利用直線l與圓O相切于第一象限,結(jié)合基本不等式,即可求得結(jié)論.
解答:解:設(shè)直線AB的方程為
x
a
+
y
b
=1
,即bx+ay-ab=0
由題意,直線l與圓O相切于第一象限,∴
ab
b2+a2
=
2
(a>0,b>0),∴ab≥4(當(dāng)且僅當(dāng)a=b=2時(shí),取等號)
∵AB=
a2+b2
2ab
≥2
2

∴a=b=2時(shí),線段AB最小為2
2

∴直線AB的方程為x+y=2
故選A.
點(diǎn)評:本題考查直線與圓相切問題,考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標(biāo)原點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標(biāo)原點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點(diǎn)為C,并且與坐標(biāo)軸相交于點(diǎn)A、B,則當(dāng)線段AB最小時(shí),則直線AB方程為( 。
A.x+y=2B.2x+y=
10
C.
2
x+y=
6
D.3x+y=2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市閔行區(qū)七寶中學(xué)高三(下)摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點(diǎn)為C,并且與坐標(biāo)軸相交于點(diǎn)A、B,則當(dāng)線段AB最小時(shí),則直線AB方程為( )
A.x+y=2
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案