i是虛數(shù)單位,復(fù)數(shù)
1+i
-1+i
=( 。
A、iB、-iC、1+iD、1-i
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則即可得出.
解答: 解:復(fù)數(shù)
1+i
-1+i
=
-(1+i)2
(1-i)(1+i)
=
-2i
2
=-i.
故選:B.
點評:本題考查了復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“Ω集合”.給出下列4個集合:其中所有“Ω集合”的序號是( 。
①M={(x,y)|y=e|x|}
②M={(x,y)|y=|cosx|}
③M={(x,y)|y=
x+1
x
}
④M={(x,y)|y=ln(x+2)}.
A、①③B、①④C、②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=-2(-
π
2
<θ<0),則
sin2θ+1
cos2θ
=(  )
A、-
4
5
B、
4
5
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,點(a,b)在直線x(sinA-sinB)+ysinB=csinC上.則角C的值為( 。
A、
π
6
B、
π
3
C、
π
4
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3cos(2x+φ)的圖象向右平移
π
3
后關(guān)于點(
π
6
,0)對稱,那么|φ|的最小值為(  )
A、
6
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左、右焦點,動點P滿足
PF1
PF2
=0,若直線l:3x-4y-10=0與點P的軌跡有且只有一個公共點,則下列結(jié)論正確的是( 。
A、a2+b2=2
B、a2-b2=2
C、a2+b2=4
D、a2-b2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖直角梯形ABCD中,AB∥DC,∠DAB=90°,DC=1,AB=3,AD=
3
,點E在邊BC上且AC、AE、AB成等比數(shù)列,若
CE
EB
,則λ=( 。
A、
3+
15
3
B、
3+2
15
3
C、
87
-9
3
D、
87
+9
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為R的球的內(nèi)部裝有4個相同半徑r的小球,則小球半徑r可能的最大值為( 。
A、
3
2+
3
R
B、
6
3+
6
R
C、
1
1+
3
R
D、
15
2+
5
R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(1)求g(x)在定義域內(nèi)的最小值;
(2)若g(a)-g(x)<
1
a
對任意x>0都成立,求實數(shù)a的取值范圍;
(3)討論g(x)與g(
1
x
)的大小.

查看答案和解析>>

同步練習(xí)冊答案