設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=
1
4
.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=
1
4
.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
分析:(1)由a⊥b,所以a•b=0,代入坐標(biāo)化簡(jiǎn)整理即得軌跡E的方程mx2+y2=1.
此為二元二次曲線,可分m=0、m=1、m>0且m≠1和m<0四種情況討論;
(2)當(dāng)m=
1
4
時(shí),軌跡E的方程為
x2
4
+y2
=1,表示橢圓,設(shè)圓的方程為x2+y2=r2(0<r<1),
當(dāng)切線斜率存在時(shí),可設(shè)圓的任一切線方程為y=kx+t,由直線和圓相切可得k和t的關(guān)系,
由OA⊥OB,所以x1x2+y1y1=0,只需聯(lián)立直線和圓的方程,消元,維達(dá)定理,又可以得到k和t的關(guān)系,這樣就可解出r.
當(dāng)切線斜率不存在時(shí),代入檢驗(yàn)即可.
(3)因?yàn)閘與圓C相切,故△OA1B1為直角△,故|A1B1|2=|OB1|2-|OA1|2,只需求出OB1和OA1的長(zhǎng)度即可,
直線l與圓C相切,且與橢圓相切找出關(guān)系,將|A1B1|表示為R的函數(shù),轉(zhuǎn)化為函數(shù)求最值.
解答:解:(Ⅰ)因?yàn)閍⊥b,
所以a•b=0,即(mx,y+1)•(x,y-1)=0,
故mx2+y2-1=0,即mx2+y2=1.
當(dāng)m=0時(shí),該方程表示兩條直線;
當(dāng)m=1時(shí),該方程表示圓;
當(dāng)m>0且m≠1時(shí),該方程表示橢圓;
當(dāng)m<0時(shí),該方程表示雙曲線.

(Ⅱ)當(dāng)m=
1
4
時(shí),軌跡E的方程為
x2
4
+y2=1

設(shè)圓的方程為x2+y2=r2(0<r<1),當(dāng)
切線斜率存在時(shí),可設(shè)圓的任一切線方程為y=kx+t,
A(x1,y1),B(x2,y2),
所以
|t|
1+k2
=r
,
即t2=r2(1+k2).①
因?yàn)镺A⊥OB,
所以x1x2+y1y1=0,
即x1x2+(kx1+t)(kx2+t)=0,
整理得(1+k2)x1x2+kt(x1+x2)+t2=0.②
由方程組
x2
4
+y2=1
y=kx+t

消去y得
(1+4k2)x2+8ktx+4t2-4=0.③
由韋達(dá)定理
x1+x2=-
8kt
1+4k2
x1x2=
4t2-4
1+4k2

代入②式并整理得
(1+k2
4t2-4
1+4k2
-
8k2t2
1+4k2
+t2=0
,
即5t2=4+4k2
結(jié)合①式有5r2=4,r=
2
5
5
∈(0,1)
,
當(dāng)切線斜率不存在時(shí),x2+y2=
4
5
也滿足題意,
故所求圓的方程為x2+y2=
4
5

(Ⅲ)顯然,直線l的斜率存在,
設(shè)l的方程y=k1x+t1,B1(x3,y3
軌跡E的方程為
x2
4
+y2=1

由直線l與圓相切得t12=R2(1+k12),
且對(duì)應(yīng)③式有△=(8k1t12-4(1+4k12)(4t12-4)=0,
即t12=1+4k12
由方程組
t
2
1
=R2(1+
k
2
1
)
t
2
1
=1+4
k
2
1
,
解得
k
2
1
=
R2-1
4-R2
t
2
1
=
3R2
4-R2

當(dāng)l與軌跡E只有一個(gè)公共點(diǎn)時(shí),對(duì)應(yīng)的方程③應(yīng)有兩個(gè)相等的.
由韋達(dá)定理
x
2
3
=
4
t
2
3
-4
1+4
k
2
1
=
3R2
4-R2
1+4×
R2-1
4-R2
=
16R2-16
3R2
,
又B1在橢圓上,
所以
y
2
3
=1-
x
2
3
4
=1-
4R2-4
3R2
=
4-R2
3R2
,
因?yàn)閘與圓C相切,
所以|A1B1|2=|OB1|2-|OA1|2=x32+y32-R2
=
-3R4+15R2-12
3R2

=-R2-
4
R2
+5

=-(R2+
4
R2
)+5
-2
4
+5=1
,
其中,等號(hào)成立的條件
R2=
4
R2
,
R=
2
∈(1,2)

即故當(dāng)R=
2
時(shí),|A1B1|的最大值為1.
點(diǎn)評(píng):本題考查求軌跡方程、及方程所表示的曲線、直線與圓、直線與橢圓的位置關(guān)系等知識(shí),考查計(jì)算能力和分析問(wèn)題解決問(wèn)題的能力,綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
,
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=
1
4
,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為曲線E.
(I)求曲線E的方程,并說(shuō)明該方程所表示曲線的形狀;
(II) 已知m=
3
4
,F(xiàn)(0,-1),直線l:y=kx+1與曲線E交于不同的兩點(diǎn)M、N,則△FMN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的實(shí)數(shù)k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量
a
=(mx,y+1),向量
b
=(x,y-1),
a
b
,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(1)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(2)點(diǎn)P為當(dāng)m=
1
4
時(shí)軌跡E上的任意一點(diǎn),定點(diǎn)Q的坐標(biāo)為(3,0),點(diǎn)N滿足
PN
=2
NQ
,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市101中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)m∈R,在平面直角坐標(biāo)系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,動(dòng)點(diǎn)M(x,y)的軌跡為E.
(Ⅰ)求軌跡E的方程,并說(shuō)明該方程所表示曲線的形狀;
(Ⅱ)已知m=.證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),并求該圓的方程;
(Ⅲ)已知m=.設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與軌跡E只有一個(gè)公共點(diǎn)B1.當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案