已知圓C1:x2+y2+2x+6y+6=0,圓C2:x2+y2-4x-8y+7=0,求兩圓的圓心距.
考點:圓的標(biāo)準(zhǔn)方程,兩點間的距離公式
專題:直線與圓
分析:配方可化圓的方程為標(biāo)準(zhǔn)方程,可得圓心,由兩點間的距離公式可求.
解答: 解:化圓的方程為標(biāo)準(zhǔn)方程可得
C1:(x+1)2+(y+3)2=4,
C2:(x-2)2+(y-4)2=13
∴圓心分別為(-1,-3)和(2,4),
由兩點間的距離公式可得兩圓的圓心距為
(-1-2)2+(-3-4)2
=
58
點評:本題考查圓的標(biāo)準(zhǔn)方程和兩點間的距離公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)當(dāng)x趨近于x0時極限存在是f(x)在點x0的某個去心領(lǐng)域內(nèi)有界的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:n∈Z,f(n)=cos(
3n+1
3
π+θ)+cos(
3n-1
3
π-θ).
(1)分別求出f(1),f(2),f(3),f(4)的值;
(2)猜想f(2k-1),f(2k)(k∈Z)的表達(dá)式,并對猜想的結(jié)果進(jìn)行驗證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=2,an+1=
2an
4+an
(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用三角函數(shù)線,寫出滿足下列條件的角x的集合:
(1)sinx>-
1
2
且cosx>
1
2
;
(2)tanx≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F(xiàn)為AB的中點.
(Ⅰ)求證:EF∥平面ACD;
(Ⅱ)若EA=EB=CD,求二面角B-AD-E的正切值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e為自然對數(shù)的底).
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若對任意的x0∈(0,e],在(0,e]上存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點.
(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;
(Ⅱ)證明:平面ABM⊥平面A1B1M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,點A(2,0),動點P與兩點O、A的距離之比為1:
3
,則P點軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊答案