設(shè)A,B,C為全集R的子集,定義A-B=A∩(∁RB)( 。
A、若A∩B⊆A∩C,則B⊆C
B、若A∩B⊆A∩C,則A∩(B-C)=∅
C、若A-B⊆A-C,則B?C
D、若A-B⊆A-C,則A∩(B-C)=∅
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計(jì)算題,集合
分析:由題意,根據(jù)新定義舉反例即可.
解答: 解:選項(xiàng)A:反例:設(shè)A=∅,B={1},C={2};選項(xiàng)B:∵A∩B⊆A∩C,
∴A∩(B-C)=A∩B∩∁RC⊆A∩C∩∁RC=∅,
故正確;
選項(xiàng)C:反例:設(shè)A=∅,B={1},C={2};
選項(xiàng)D:反例:設(shè)A={1},B={1,2},C={2};
故選B.
點(diǎn)評(píng):本題考查了集合的運(yùn)算的變形應(yīng)用,同時(shí)考查了對(duì)新定義的接受能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x,x∈R,若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式
(1)(2
7
9
)0.5+(0.1)-2+(2
10
27
)-
2
3
-3π°+
37
48
;
(2)(lg2)2+lg20×lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上是增函數(shù)的是( 。
A、y=|x|+1
B、y=-
1
x
C、y=-x2+1
D、y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα-cosα=
2
,α∈(0,π),則tanα=( 。
A、1
B、-1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù) y=ax+1(a>0且a≠1)過(guò)定點(diǎn)( 。
A、(1,0)
B、(0,2)
C、(0,0)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(
3
2
,sina),
b
=(cosa,
1
3
)且
a
b
,則銳角a為( 。
A、30°B、60°
C、45°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-1,0,1},B={1,4},則A∪B=( 。
A、{1}
B、{-1,0,4}
C、{-1,0,1,4}
D、{0,1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題,不正確的是( 。
A、如果兩條平行線中的一條與一個(gè)平面相交,那么另一條也和這個(gè)平面相交
B、如果直線a和直線b平行,那么直線a平行于經(jīng)過(guò)b的所有的平面
C、如果a和b是異面直線,那么經(jīng)過(guò)a有且只有一個(gè)平面與直線b平行
D、空間四邊形相鄰兩邊的中點(diǎn)連線,平行于經(jīng)過(guò)另外兩條邊的平面

查看答案和解析>>

同步練習(xí)冊(cè)答案