如圖,在四棱錐
中,底面
為矩形,
底面
,
、
分別是
、
中點.
(1)求證:
平面
;
(2)求證:
.
試題分析:(1)要證直線與平面平行,根據(jù)直線與平面平行的判定定理,需要在平面內(nèi)找一條直線與已知直線平行,由于本小題中點較多,所以想到作出四邊形AMNQ.通過判定平行四邊形,然后再用平行四邊形的性質(zhì)得到所需要的兩直線平行,這種方法也是在證明直線與平面平行時的常用的方法.
(2)直線與直線垂直的證明根據(jù)判斷定理,一般需要轉(zhuǎn)化為證明直線與平面的垂直.這題是根據(jù)第一步的結(jié)論證明AB與平面PAD垂直,從而可得結(jié)論.
試題解析:證明:(1)取
中點
,連結(jié)
.
因為
是
中點,
所以
.
又
是
中點,
,
所以
,
四邊形
是平行四邊形.所以
.因為
平面
,
平面
,
所以
平面
. 7分
(2)因為
平面
,所以
.
又
是矩形,
所以
.
所以
平面
,
所以
.又
,
所以
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,直三棱柱
中,點
是
上一點.
⑴若點
是
的中點,求證
平面
;
⑵若平面
平面
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,矩形
所在的平面與正方形
所在的平面相互垂直,
是
的中點.
(1)求證:
∥平面
;
(2)求證:平面
⊥平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖1,矩形
中,
,
,
、
分別為
、
邊上的點,且
,
,將
沿
折起至
位置(如圖2所示),連結(jié)
、
、
,其中
.
(Ⅰ)求證:
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
m,
n是空間兩條不同的直線,
α,
β,
γ是三個不同的平面,則下列命題中為真的是( )
A.若α∥β,m?α,n?β,則m∥n |
B.若α∩γ=m,β∩γ=n,m∥n,則α∥β |
C.若m?β,α⊥β,則m⊥α |
D.若m⊥β,m∥α,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列命題中錯誤的是 ( ).
A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β |
B.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β |
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ |
D.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在四面體ABCD中,有如下結(jié)論:
①若
,則
;
②若
分別是
的中點,則
的大小等于異面直線
與
所成角的大。
③若點
是四面體
外接球的球心,則
在面
上的射影為
的外心;
④若四個面是全等的三角形,則
為正四面體.
其中所有正確結(jié)論的序號是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知兩條不重合的直線
m,
n和兩個不重合的平面
α,
β,有下列命題:
①若
m⊥
n,
m⊥
α,則
n∥
α;②若
m⊥
α,
n⊥
β,
m∥
n,則
α∥
β;③若
m,
n是兩條異面直線,
m?
α,
n?
β,
m∥
β,
n∥
α,則
α∥
β;④若
α⊥
β,
α∩
β=
m,
n?
β,
n⊥
m,則
n⊥
α;其中正確命題的個數(shù)是( ).
查看答案和解析>>