5.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(x)=f(-x),f(x)在區(qū)間(-∞,0)上是減函數(shù),并且f(2a2+a+6)<f(3a2-2a+2),則實(shí)數(shù),a的取值集合是(-∞,-1)∪(4,+∞).

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系即可求a的取值范圍.

解答 解:∵f(x)=f(-x),f(x)在區(qū)間(-∞,0)上是減函數(shù),
∴f(x)是R上的偶函數(shù),且在(0,+∞)上是增函數(shù).
又∵2a2+a+6=2(a+$\frac{1}{4}$)2+$\frac{49}{8}$>0,3a2-2a+2=3(a-$\frac{1}{3}$)2+$\frac{7}{3}$>0,
∴不等式f(2a2+a+6)<f(3a2-2a+2),等價(jià)為2a2+a+6<3a2-2a+2,
∴a2-3a-4>0,
∴a<-1或a>4,
∴實(shí)數(shù)a的取值集合是(-∞,-1)∪(4,+∞)
故答案為(-∞,-1)∪(4,+∞).

點(diǎn)評 本題主要考查抽象函數(shù)的應(yīng)用,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2+2x-3<0},集合B={x|x-a<0},若A⊆B,則a的取值范圍是( 。
A.a≤1B.a≥1C.a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.三角形的兩邊分別為5和3,它們夾角的余弦是方程5x2-7x-6=0的根,則三角形的面積為( 。
A.$\frac{9}{2}$B.9C.15D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.二次函數(shù)f(x)=x2-ax+a2-3有兩個(gè)零點(diǎn)分別為x1,x2,且x1<1<x2,則a的取值范圍是( 。
A.(-2,1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)按照下述方法定義:當(dāng)x≤2時(shí),f(x)=-x2+2x;當(dāng)x>2時(shí),f(x)=$\frac{1}{2}$(x-2)2,方程f(x)=$\frac{1}{2}$的所有實(shí)數(shù)根之和是( 。
A.2B.3C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x2+cosx,對于[$-\frac{π}{2},\frac{π}{2}$]上的任意x1,x2,有如下條件:①x1>x2;②x1<x2;③|x1|>x2;④x12>x22.其中能使f(x1)>f(x2)恒成立的序號是( 。
A.①④B.②③C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$y=\sqrt{ln\sqrt{2x-1}}+\frac{1}{2-x}$的定義域是[1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線$\frac{x^2}{3}-\frac{y^2}{4}+1=0$的焦點(diǎn)坐標(biāo)是(0,$\sqrt{7}$),(0,-$\sqrt{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A.(1,10)B.(10,20)C.(10,15)D.(20,+∞)

查看答案和解析>>

同步練習(xí)冊答案