9.甲、乙兩個學(xué)校高三年級分別有1100人、1000人,為了解兩個學(xué)校高三年級全體學(xué)生在該地區(qū)三?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣的方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)12981010y3
(1)計算x,y的值;
(2)若將頻率視為概率,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,求X的分布列和期望.

分析 (1)由分層抽樣性質(zhì)得甲校抽取學(xué)生人數(shù)為55人,乙校抽取的學(xué)生人數(shù)為50人,由此能求出x,y.
(2)乙校抽取的50名學(xué)生中,考試成績在[120,150]內(nèi)有20人,將頻率視為概率,乙校高三學(xué)年三模數(shù)學(xué)成績優(yōu)秀的概率為$\frac{2}{5}$,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,則X~B(3,$\frac{2}{5}$),由此能求出X的分布列和EX.

解答 解:(1)由分層抽樣性質(zhì)得甲校抽取學(xué)生人數(shù)為:1100×$\frac{105}{1100+1000}$=55人,
乙校抽取的學(xué)生人數(shù)為:1000×$\frac{105}{1100+1000}$=50人,
∴x=55-2-3-10-15-15-3-1=6,
y=50-1-2-9-8-10-10-3=7.
(2)乙校抽取的50名學(xué)生中,考試成績在[120,150]內(nèi)有10+7+3=20人,
∴將頻率視為概率,乙校高三學(xué)年三模數(shù)學(xué)成績優(yōu)秀的概率為$\frac{2}{5}$,
從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,則X~B(3,$\frac{2}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{2}{5})^{0}(\frac{3}{5})^{3}$=$\frac{27}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{2}{5})(\frac{3}{5})^{2}$=$\frac{54}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{3}{5})$=$\frac{36}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{2}{5})^{3}(\frac{3}{5})^{0}$=$\frac{8}{125}$,
∴X的分布列為:

 X 0 1 2 3
 P $\frac{27}{125}$ $\frac{54}{125}$ $\frac{36}{125}$ $\frac{8}{125}$
EX=$0×\frac{27}{125}+1×\frac{54}{125}+2×\frac{36}{125}+3×\frac{8}{125}$=$\frac{6}{5}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認(rèn)真審題,注意二項分布的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)解不等式:$\sqrt{x-1}$+2x≤5
(2)解關(guān)于x的不等式:$\frac{ax-1}{x-2}$>$\frac{a}{2}$(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.盒中有大小相同的5個白球和3個黑球,從中隨機摸出3個球,記摸到黑球的個數(shù)為X,則P(X=2)=$\frac{15}{56}$,EX=$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點P(3,3),Q(3,-3),O為坐標(biāo)原點,動點M(x,y)滿足$\left\{\begin{array}{l}{|\overrightarrow{OP}•\overrightarrow{OM}|≤12}\\{|\overrightarrow{OQ}•\overrightarrow{OM}|≤12}\end{array}\right.$,則點M所構(gòu)成的平面區(qū)域的內(nèi)切圓和外接圓半徑之比為( 。
A.$\frac{1}{\sqrt{2}}$B.$\frac{1}{2}$C.$\frac{1}{2\sqrt{2}}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中正確的是( 。
A.用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺
B.兩個底面平行且相似,其余各面都是梯形的多面體是棱臺
C.棱臺的底面是兩個相似的正方形
D.棱臺的側(cè)棱延長后必交于一點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B等于( 。
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x||4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},則∁RA∩B=( 。
A.(-3-2]B.(-3-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-3)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.集合{x|0<|x-1|<3,x∈Z}的真子集個數(shù)是15.

查看答案和解析>>

同步練習(xí)冊答案