【題目】在①,②復平面上表示的點在直線上,③.這三個條件中任選一個,補充在下面問題中,求出滿足條件的復數(shù),以及.已知復數(shù),,______.若,求復數(shù),以及.

【答案】答案見解析

【解析】

選條件①時,先根據(jù)復數(shù)的除法運算,得到,再由,求出,再根據(jù)復數(shù)的運算,得到,由復數(shù)模的計算公式,即可求出結(jié)果;

選條件②時,先由復數(shù)乘法運算,以及復數(shù)的幾何意義,得到對應的點,求出,再同①,即可求出結(jié)果;

選條件③時,根據(jù)共軛復數(shù)的概念,以及復數(shù)的運算,求出,再同①,即可求出結(jié)果.

方案一:選條件①,

因為,所以,

由于,所以,解得.

所以,

從而,

.

方案二:選條件②,

因為,,所以

在復平面上表示的點為,

依題意可知,得,

所以,,

從而,

.

方案三:選條件③,

因為,所以,

,得

所以,,

從而,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅、舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),其主體造型的平面圖是由兩個相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計劃在正方形MNPQ上建一花壇,造價為4 200元/m2,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/m2,再在四個空角上鋪草坪,造價為80元/m2.

(1)設(shè)總造價為S元,AD的邊長為x m,試建立S關(guān)于x的函數(shù)解析式;

(2)計劃至少要投多少萬元才能建造這個休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左右焦點分別為,實軸長為6,漸近線方程為,動點在雙曲線左支上,為圓上一點的最小值為

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,的中點,則異面直線所成的角的余弦值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的100人的得分統(tǒng)計結(jié)果如表所示:

組別

[30,40

[4050

[50,60

[60,70

[70,80

[80,90

[90,100]

頻數(shù)

2

15

20

25

24

10

4

I)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分Z服從正態(tài)分布Nμ,198),μ近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求P37Z79);

II)在(I)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:

得分不低于μ的可以獲贈2次隨機話費,得分低于μ的可以獲贈1次隨機話費;

每次獲贈的隨機話費和對應的概率為:

贈送話費的金額(單元:元)

20

40

概率

現(xiàn)有市民甲參加此次問卷調(diào)查,記ξ(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求ξ的分布列與數(shù)學期望.附:參考數(shù)據(jù)與公式:14

XNμ,σ2),則Pμ﹣σ<Xμ+σ)=0.6826;Pμ2σ<Xμ+2σ)=0.9544,Pμ3σ<Xμ+3σ)=0.9974

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于的二項式的展開式的二項式系數(shù)之和為1024,常數(shù)項為180.

1)求的值;

2)求展開式中的無理項.(不需求項的表達式,指出無理項的序號即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若以曲線上任意一點為切點作切線,曲線上總存在異于點的點,使得以點為切點作切線滿足,則稱曲線具有“可平行性”,其中具有“可平行性”的曲線是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6名運動員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?

1)甲、乙兩人必須入選且跑中間兩棒;

2)甲不跑第一棒且乙不跑第四棒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)設(shè)的極值點,求的值;

(Ⅱ)在(Ⅰ)的條件下,在定義域內(nèi)恒成立,求的取值范圍

(Ⅲ)時,證明.

查看答案和解析>>

同步練習冊答案