已知向量
a
=(1,1),
b
=(3,4),
c
=(x,5)滿足(8
a
-
c
)•
b
=30,則x=
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:運用向量的加減和數(shù)乘運算,以及向量的數(shù)量積的坐標(biāo)表示,計算即可得到x.
解答: 解:向量
a
=(1,1),
b
=(3,4),
c
=(x,5),
a
b
=3+4=7,
c
b
=3x+20,
由(8
a
-
c
)•
b
=30,
則8
a
b
-
c
b
=30,
即有56-(3x+20)=30,
解得,x=2.
故答案為:2.
點評:本題考查平面向量的數(shù)量積的坐標(biāo)表示,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinx,sinx),
n
=(sinx,-
3
cosx),函數(shù)f(x)=
1
2
-
m
n

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別角A,B,C的對邊,A為銳角,若sin(2A-
π
6
)-f(A)=
1
2
,b+c=7,△ABC的面積為2
3
,其a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等比數(shù)列,且a2a3a4=64,a7=16,a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2-lnx在(0,1]上存在唯一零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx-
1
x
+3,且f(-2)=10,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(cos25°,sin25°),
b
=(cos20°,sin20°),若
c
=
a
+t
b
(t∈R)
,則|
c
|的最小值為(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x||x|<4},B={x|log2x<3},則A∩B=( 。
A、{x|2<x<4}
B、{x|0<x<2}
C、{x|0<x<4}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=lgx設(shè)a=f(
6
5
),b=f(
3
2
),c=f(
5
2
),則( 。
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個袋中裝有大小質(zhì)地相同的20個小球,其中紅球與白球各10個,若一人從袋中連續(xù)兩次摸球,一次摸出一個小球(第一次摸出小球不放回),則在第一次摸出1個紅球的條件下,第二次摸出1個白球的概率為(  )
A、
19
20
B、
18
19
C、
10
19
D、
18
95

查看答案和解析>>

同步練習(xí)冊答案