在△中,的對(duì)邊分別為,若.
(1)求證:;
(2)求邊長(zhǎng)的值;
(3)若,求△的面積.
(1)詳見(jiàn)解析;(2);(3).
解析試題分析:(1)將條件中等式,通過(guò)向量語(yǔ)言轉(zhuǎn)化為角的等式,進(jìn)而達(dá)到證明的目的;(2)結(jié)合條件自覺(jué)地選擇余弦定理的恰當(dāng)?shù)谋磉_(dá)形式,增加條件,從而解出邊長(zhǎng)的值;(3)將向量等式轉(zhuǎn)化為邊與角的等式,再結(jié)合(1)(2)可解出三邊,進(jìn)而可求出三角形的面積.在解三角形的問(wèn)題中,關(guān)鍵是結(jié)合題目的自身特點(diǎn),選擇正、余弦定理的恰當(dāng)形式,同時(shí)注意邊角互化思想的使用.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fe/5/1atao2.png" style="vertical-align:middle;" />,所以,即,
由正弦定理得,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/a/1fdaw2.png" style="vertical-align:middle;" />,所以,所以. 4分
(2)由(1)知:,所以,再由余弦定理得:結(jié)合條件得:. 8分
(3)由平方得:,又,,得,從而有,則,所以△的面積為. 12分
考點(diǎn):向量數(shù)量積與解三角形綜合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
是平面上一點(diǎn),是平面上不共線(xiàn)三點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,時(shí), 則)的值為_(kāi)_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,=(,),記;
(1)若,求的值;
(2)若中,角的對(duì)邊分別是,且滿(mǎn)足,求函數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù)
(1)求方程g(x)=0的解集;
(2)求函數(shù)f(x)的最小正周期及其單調(diào)增區(qū)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若正方形ABCD邊長(zhǎng)為1,點(diǎn)P在線(xiàn)段AC上運(yùn)動(dòng),則的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com