A. | $\frac{2}{3}$ | B. | 2 | C. | $\frac{26}{3}$ | D. | $\frac{14}{3}$ |
分析 由題意可得f(x)的圖象關于點($\frac{π}{4}$,0)對稱,$\frac{π}{4}ω$-$\frac{π}{6}$=kπ,k∈Z.且$\frac{2π}{ω}$<$\frac{π}{2}$<$\frac{3}{2}$•$\frac{2π}{ω}$,求得6>ω>4,結(jié)合所給的選項,得出結(jié)論.
解答 解:∵函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0),f(0)=-f($\frac{π}{2}$),即f(0)+f($\frac{π}{2}$)=0,
故f(x)的圖象關于點($\frac{π}{4}$,0)對稱,故sin($\frac{π}{4}ω$-$\frac{π}{6}$)=0,故有$\frac{π}{4}ω$-$\frac{π}{6}$=kπ,k∈Z ①.
∵f(x)在(0,$\frac{π}{2}$)上有且僅有三個零點,故有$\frac{2π}{ω}$<$\frac{π}{2}$<$\frac{3}{2}$•$\frac{2π}{ω}$,∴6>ω>4 ②.
綜合①②,結(jié)合所給的選項,可得ω=$\frac{14}{3}$,
故選:D.
點評 本題主要考查正弦函數(shù)的圖象的對稱性,正弦函數(shù)的周期性,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com