O是平行四邊形ABCD外一點,求證:
OA
+
OC
=
OB
+
OD

精英家教網(wǎng)
分析:
OA
OC
放在三角形中,由向量加法的三角形法則用
OB
OD
表達,找關(guān)系即可.
解答:解:
OA
+
OC
=
OB
+
BA
 +
OD
+
DC

因為ABCD是平行四邊形,所以
BA
+
DC
=
0

所以
OA
+
OC
=
OB
+
OD
點評:本題考查向量加法的幾何意義,向量的三角形法則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北區(qū)一模)如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB=
2
,AD=3,BB1=1.
(1)設(shè)O是線段BD的中點,求證:C1O∥平面AB1D1;
(2)求直線AB1與平面ADD1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB=2,AD=4,BB1=1.
設(shè)O是線段BD的中點.
(1)求證:C1O∥平面AB1D1;
(2)證明:平面AB1D1⊥平面ADD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)任選一題作答選修:幾何證明選講如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F.
(I)若AC=6,AB=10,求⊙O的半徑;
(Ⅱ)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(4,0),B(t,2),C(6,t),t∈R.
(1)若△ABC是直角三角形,求t的值;
(2)O為原點,若四邊形OACB是平行四邊形,且點P(x,y)在其內(nèi)部及其邊界上,求2y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三高考樣卷數(shù)學(xué)文卷 題型:解答題

(本題滿分14分) 如圖,在三棱柱BCDB1C1D1與四棱錐ABB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB,AD=3,BB1=1.

(Ⅰ) 設(shè)O是線段BD的中點,

求證:C1O∥平面AB1D1;

(Ⅱ) 求直線AB1與平面ADD1所成的角.

 

查看答案和解析>>

同步練習(xí)冊答案