7.若x,y為非零實數(shù),a=$\frac{x}{|x|}$+$\frac{y}{|y|}$,則所有不同a組成的集合為( 。
A.{-2,2}B.{0,2}C.{-2,0}D.{-2,0,2}

分析 若x,y同正,則a=2;若x,y同負,則a=-2;若x,y一正一負,則a=0.

解答 解:若x>0,y>0時,則a=$\frac{x}{|x|}$+$\frac{y}{|y|}$=2;
若x<0,y>0或x>0,y<0時,則a=$\frac{x}{|x|}$+$\frac{y}{|y|}$=0;
若x<0,y<0時,則a=$\frac{x}{|x|}$+$\frac{y}{|y|}$=-2
∴所有不同a組成的集合為{-2,0,2},
故選:D.

點評 本題考查分類討論思想,集合中元素的判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.用描述法表示下列各集合:
(1)被3除余2的自然數(shù)組成的集合;
(2)大于-3且小于9的所有整數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2lnx-x2
(1)討論f(x)的單調(diào)性并求最大值;
(2)設(shè)g(x)=xex-(a-1)x2-x-2lnx,若f(x)+g(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,A,B,C,D,E,F(xiàn),G,H是⊙O上的八個等分點,則在以A,B,C,D,E,F(xiàn),G,H及圓心O這九個點中的任意兩點為起點與終點的向量中,模等于半徑的向量及模等于半徑的$\sqrt{2}$倍的向量分別有( 。
A.8個與8個B.8個與16個C.16個與16個D.16個與8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合M={x|-1<x<3},N={y|y=2x+a,x∈M},M∪N=N,則實數(shù)a的取值范圍是( 。
A.{a|-3<a<1}B.{a|-3≤a≤1}C.{a|-2<a<2}D.{a|-2≤a≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={(x,y)|2x+y=1,x∈R,y∈R},B={(x,y)|a2x+2y=a,x,y∈R}
(1)若A∩B={(2,-3)},求實數(shù)a的值.
(2)是否存在實數(shù)a,使得A∩B=∅?若存在,求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(θ)=$\frac{1}{si{n}^{2}θ}$+$\frac{9}{co{s}^{2}θ}$,θ∈(0,$\frac{π}{2}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{\frac{1}{1-|x|}}$的定義域是( 。
A.{x|x>0}B.{x|x>0或x≤-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角坐標系xOy中線段AB與y軸垂直,其長度為2,AB的中點C在直線x+2y-4=0上,則tan∠AOB的最大值為$\frac{5\sqrt{3}+8}{11}$.

查看答案和解析>>

同步練習(xí)冊答案