精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點,

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

【答案】(Ⅰ);(Ⅱ) 面積的最大值為3,此時直線的方程為

【解析】試題分析:(1)根據題意列出關于 、的方程組,結合性質 , ,求出 、,即可得結果;(2)設直線方程,代入橢圓方程,由韋達定理,弦長公式及基本不等式的性質,即可求得面積為,根據基本不等式可求最大值及直線的方程.

試題解析:(1)由題知,故,代入橢圓的方程得,又,故,橢圓.

(2)由題知,直線不與軸重合,故可設,由,

,則,由關于原點對稱知,

,

,即,當且僅當時等號成立,

面積的最大值為3,此時直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都為50%,現采用隨機模擬的方法估計該運動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四個隨機數為一組,代表四次投籃的結果.經隨機模擬產生了20組隨機數: 9075 9660 1918 9257 2716 9325 8121 4589 5690 6832
4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
據此估計,該運動員四次投籃恰有兩次命中的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和,且2的等差中項.

1)求數列的通項公式;

2)若,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點且離心率為橢圓的中心在原點,焦點在軸上.

(1)求橢圓的方程;

(2)設點橢圓的左準線軸的交點,過點的直線與橢圓相交于兩點,記橢圓的左,右焦點分別為,上下兩個頂點分別為.當線段的中點落在四邊形內(包括邊界)時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數的圖象.

(1)求函數的解析式;

(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數的最小正周期;

(Ⅱ)若函數在區(qū)間上有兩個不同的零點,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個交點,求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數f(x)是否存在?若存在,求出f(x)的表達式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列{an}的公差d∈(0,1),且 =1,當n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(文科)已知函數.

(1)若,求曲線在點處的切線方程;

(2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案