曲線y=x-cosx在點(diǎn)(
π
2
π
2
)處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用,直線與圓
分析:求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,再由點(diǎn)斜式方程即可得到所求切線方程.
解答: 解:y=x-cosx的導(dǎo)數(shù)為y′=1+sinx,
即有在點(diǎn)(
π
2
,
π
2
)處的切線斜率為k=1+sin
π
2
=2,
則曲線在點(diǎn)(
π
2
,
π
2
)處的切線方程為y-
π
2
=2(x-
π
2
),
即為2x-y-
π
2
=0.
故答案為:2x-y-
π
2
=0.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,掌握導(dǎo)數(shù)的幾何意義和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在空間直角坐標(biāo)系中有直三棱柱ABCA1B1C1,CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查發(fā)現(xiàn),人們長期食用含高濃度甲基汞的魚類會(huì)引起汞中毒,其中羅非魚體內(nèi)汞含量比其他魚偏高.《中華人民共和國環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過1.0ppm,現(xiàn)從一批數(shù)量很大的羅非魚中隨機(jī)地抽出15條作為樣本,經(jīng)檢測(cè)得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前的數(shù)字為莖,小數(shù)點(diǎn)后第一位數(shù)字為葉)如圖所示
(1)檢查人員從這15條魚中,隨機(jī)抽出3條,求3條中恰有1條汞含量超標(biāo)的概率;
(2)若從這批數(shù)量很大的魚中任意選3條,記X表示抽到的汞含量超標(biāo)的魚的條數(shù),以此15條魚的樣本數(shù)據(jù)來估計(jì)這批數(shù)量很大的魚的總體數(shù)據(jù),求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:對(duì)任意自然數(shù)n,總有
1
2
+
3
4
+
5
8
+…+
2n-1
2n
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x3-x+1(x∈R).求證:滿足f(x)=0的實(shí)數(shù)值最多只有一個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x+2|
+kx+b,其中k,b為實(shí)數(shù)且k≠0.
(I)當(dāng)k>0時(shí),根據(jù)定義證明f(x)在(-∞,-2)單調(diào)遞增;
(Ⅱ)求集合Mk={b|函數(shù)f(x)有三個(gè)不同的零點(diǎn)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2ωxsinφ+sinωxcosωxcosφ(φ∈N*且|φ|<
π
4
),f(0)=f(
π
6

(Ⅰ)若ω=4,求φ的值;
(Ⅱ)若函數(shù)f(x)的圖象在[0,
π
6
]內(nèi)有且僅有一條對(duì)稱軸但沒有對(duì)稱中心.求關(guān)于x的方程f(x)=0在區(qū)間[0,π]內(nèi)的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)四邊形ACBD是⊙O的內(nèi)接正方形,P是⊙O上的任一點(diǎn),求證:|
PA
|2+|
PB
|2+|
PC
|2+|
PD
|2的值與點(diǎn)P的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設(shè)bn=
an
2n-1
,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案