分析 設(shè)快艇從M處以v千米/小時(shí)的速度出發(fā),沿MN方向航行,1小時(shí)后在N點(diǎn)與汽車相遇,MQ為M點(diǎn)到ON的距離,設(shè)∠MON=α,由余弦定理,求出MN2=OM2+ON2-2OM•ON•cosα,利用二次函數(shù)的性質(zhì)求出最值,得到結(jié)果即可.
解答 解:如圖所示,設(shè)快艇從M處以v千米/小時(shí)的速度出發(fā),沿MN方向航行,1小時(shí)后在N點(diǎn)與汽車相遇,MQ為M點(diǎn)到ON的距離,則MQ=400,在△MON中,MO=500,ON=100t,MN=vt,
設(shè)∠MON=α,由題意知$sinα=\frac{4}{5}$,則$cosα=\frac{3}{5}$,…(2分)
由余弦定理,得MN2=OM2+ON2-2OM•ON•cosα,
即${v^2}{t^2}={500^2}+{100^2}{t^2}-2×500×100t×\frac{3}{5}$,…(4分)${v^2}=\frac{{{{500}^2}}}{t^2}-2×500×60×\frac{1}{t}+{100^2}={(\frac{500}{t}-60)^2}+{100^2}-{60^2}$…(6分)
當(dāng)$\frac{500}{t}=60$,即$t=\frac{25}{3}$時(shí),$v_{min}^2=6400$即快艇必須至少以80千米/小時(shí)速度行駛,
此時(shí)$MN=80×\frac{25}{3}=\frac{2000}{3}$,…(9分)
設(shè)∠NMQ=β,則$cosβ=\frac{MQ}{MN}=\frac{400}{2000}=-\frac{3}{5}$,…(11分)
故快艇的行駛方向北偏東53°08'…(12分)
點(diǎn)評(píng) 本題考查實(shí)際問(wèn)題的應(yīng)用,余弦定理以及二次函數(shù)的性質(zhì)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1} | B. | {l,2,3} | C. | {0} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com