下列函數(shù)f(x)中,在(0,+∞)上是減函數(shù)的是( 。
A、f(x)=
1
x
-x
B、f(x)=x3
C、f(x)=lnx
D、f(x)=2x
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)題意,對選項中的每一個函數(shù)進行認真分析,選出符合條件的函數(shù)即可.
解答: 解:對于A,∵f(x)=
1
x
-x,∴f′(x)=-
1
x2
-1在x∈(0,+∞)上f′(x)<0,
∴f(x)在(0,+∞)上是減函數(shù),滿足題意;
對于B,f(x)=x3在(0,+∞)上是增函數(shù),∴不滿足題意;
對于C,f(x)=lnx在(0,+∞)上是增函數(shù),∴不滿足題意;
對于D,f(x)=2x在(0,+∞)上是增函數(shù),∴不滿足題意;
故選:A.
點評:本題考查了函數(shù)的單調(diào)性問題,解題時應根據(jù)題意,判定函數(shù)的單調(diào)性與單調(diào)區(qū)間,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線y=x+b與平面區(qū)域C:
|x|≤2
|y|≤2
,的邊界交于A,B兩點,若|AB|≥2
2
,則b的取值范圍是( 。
A、(-2,2)
B、[-2,2)
C、(-2,2]
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,長軸長為4,過焦點且垂直于長軸的弦長為3,則橢圓的方程是(  )
A、
x2
4
+
y2
3
=1
B、
x2
4
+
y2
2
=1
C、
x2
5
+
y2
4
=1
D、
x2
2
+y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等差數(shù)列{an}的首項為2,公差為d(d≠0),其前n項和Sn滿足:對于任意的n∈N*,都有
S2n
Sn
是同一個非零常數(shù),則d的值為( 。
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,CD是斜邊AB上的高.已知CD=
2
,BC=
6
,則AD=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b為非零實數(shù),且a>b,則下列不等式成立的是( 。
A、a2b>ab2
B、a2>b2
C、
b
a
a
b
D、
1
ab2
1
a2b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a1=1,d=1,則該數(shù)列的前n項和Sn=( 。
A、n
B、n(n+1)
C、n(n-1)
D、
n(n+1)
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=3,S11=0.
(1)求數(shù)列{an}的通項公式; 
(2)當n為何值時,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二階矩陣A有特征值λ1=3及其對應的一個特征向量
a1
=
1
1
,特征值λ2=-1及其對應的一個特征向量
a2
=
1
-1
,求矩陣A的逆矩陣A-1

查看答案和解析>>

同步練習冊答案