13.下列四組函數(shù)中,有相同圖象的一組是( 。
A.f(x)=x,$g(x)=\sqrt{x{\;}^2}$B.f(x)=x,$g(x)=\root{3}{x^3}$
C.f(x)=sinx,g(x)=sin(π+x)D.f(x)=x,g(x)=elnx

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.同一函數(shù),圖象相同.

解答 解:對于A:f(x)=x與$g(x)=\sqrt{x{\;}^2}$=|x|,它們定義域相同,對應(yīng)關(guān)系不相同,不是同一函數(shù),圖象不相同.
對于B:f(x)=x與$g(x)=\root{3}{x^3}$=x,它們定義域相同,對應(yīng)關(guān)系相同,是同一函數(shù),圖象相同.
對于C:f(x)=sinx與g(x)=sin(π+x)=-sinx,它們定義域相同,對應(yīng)關(guān)系不相同,不是同一函數(shù),圖象不相同.
對于D:f(x)=x的定義域為R,而g(x)=elnx,的定義域x>0,它們定義域不相同,對應(yīng)關(guān)系不相同,不是同一函數(shù),圖象不相同.
故選:B.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,同一函數(shù),圖象相同.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某幾何體由圓柱挖掉半個球和一個圓錐所得,三視圖中的正視圖和側(cè)視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=45°,則橢圓的離心率為( 。
A.2-$\sqrt{2}$B.$\sqrt{2}-1$C.3-2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$θ∈(0,\frac{π}{2})$,則曲線$\frac{x^2}{9}-\frac{y^2}{{4{{sin}^2}θ}}=1$與曲線$\frac{x^2}{{9-4{{cos}^2}θ}}-\frac{y^2}{4}=1$的(  )
A.離心率相等B.焦距相等C.虛軸長相等D.頂點相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x||x-2|≥1},B={x|x>2},則A∩B=(  )
A.{x|2<x≤3}B.{x|1≤x<2}C.{x|x>2}D.{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ 2x-y≤0\end{array}\right.$,若y≥k(x+2)恒成立,則實數(shù)k的最大值是(  )
A.-1B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
     年份x20112012201320142015
儲蓄存款y(千億元)567810
(1)求y關(guān)于x的回歸方程$\widehat{y}$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehat$x+$\widehat{a}$
(2)用所求回歸方程預(yù)測該地區(qū)2016年的人民幣儲蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat{y}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{n}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\overline$$\overline{x}$
(提示:設(shè)時間代號t=x-2010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校高三數(shù)學(xué)備課組為了更好的制定二輪復(fù)習(xí)的計劃,開展了試卷講評后效果的調(diào)研,從上學(xué)期期末數(shù)學(xué)試題中選出一些學(xué)生易錯題,重新進(jìn)行測試,并認(rèn)為做這些題不出任何錯誤的同學(xué)為“過關(guān)”,出了錯誤的同學(xué)認(rèn)為“不過關(guān)”.現(xiàn)隨機(jī)抽查了年級50人,他們的測試成績的頻數(shù)分布如下表:
期末分?jǐn)?shù)段(0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
人數(shù)510151055
“過關(guān)”人數(shù)129734
(1)由以上統(tǒng)計數(shù)據(jù)完成如下2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為期末數(shù)學(xué)成績不低于90分與測試“過關(guān)”是否有關(guān)?說明你的理由.
分?jǐn)?shù)低于90分人數(shù)分?jǐn)?shù)不低于90分人數(shù)合計
過關(guān)人數(shù)121426
不過關(guān)人數(shù)18624
合計302050
(2)在期末分?jǐn)?shù)段[105,120)的5人中,從中隨機(jī)選3人,記抽取到過關(guān)測試“過關(guān)”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.025
k2.0722.7063.8415.024
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}是等差數(shù)列,且a4+4是a2+2和a6+6的等比中項,則{an}的公差d=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案