6.已知函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關(guān)于x=-$\frac{π}{4}$對(duì)稱,則把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一條對(duì)稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{11π}{6}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,求得函數(shù)g(x)的一條對(duì)稱軸方程.

解答 解:根據(jù)函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關(guān)于x=-$\frac{π}{4}$對(duì)稱,可得$f(0)=f(-\frac{π}{2})$,
可得λ=-1,所以$f(x)=sinx-cosx=\sqrt{2}sin(x-\frac{π}{4})$.
把f(x)的圖象橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,可得y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$)的圖象,
再向右平移$\frac{π}{3}$,得到函數(shù)g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x-$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{5π}{12}$)的圖象,
即g(x)=$\sqrt{2}$sin($\frac{1}{2}x$-$\frac{5π}{12}$),
令 $\frac{1}{2}•x-\frac{5π}{12}$=kπ+$\frac{π}{2}$,求得x=2kπ+$\frac{11π}{6}$,k∈Z,故函數(shù)g(x)的圖象的對(duì)稱軸方程為 x=2kπ+$\frac{11π}{6}$,k∈Z.
當(dāng)k=0時(shí),對(duì)稱軸的方程為$x=\frac{11π}{6}$,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知C${\;}_{n+1}^{n-1}$=36,則n=8;已知6p=2,log65=q,則${10^{\frac{q}{p+q}}}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.$\frac{22}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍是[1,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知四棱錐P-ABCD中,底面ABCD為矩形,且中心為O,AB=BO=1,PA=PB=PC=PD=2,則該四棱錐的外接球的體積為$\frac{32\sqrt{3}}{27}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合M={x|-4≤x<2},集合N={x|2x<$\frac{1}{4}$},則M∩N中所含整數(shù)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知2an-2=Sn,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知cos($\frac{5π}{12}$+α)=$\frac{1}{3}$,且-π<α<-$\frac{π}{2}$,則sin(2α+$\frac{5π}{6}}$)=(  )
A.$\frac{{4\sqrt{2}}}{9}$B.$\frac{2}{9}$C.$-\frac{2}{9}$D.$-\frac{{4\sqrt{2}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于y軸對(duì)稱,且z1=2-i,則復(fù)數(shù)$\frac{z_1}{{|{z_1}{|^2}+{z_2}}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案