11.sin(-$\frac{13π}{4}$)的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

分析 直接利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值.

解答 解:sin(-$\frac{13π}{4}$)=-sin$\frac{13π}{4}$=-sin(3π$+\frac{π}{4}$)=sin$\frac{π}{4}=\frac{\sqrt{2}}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查利用誘導(dǎo)公式化簡(jiǎn)求值,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.規(guī)定運(yùn)算$|\begin{array}{l}{a}&\\{c}&lpx1j9h\end{array}|$=ad-bc,若$|\begin{array}{l}{sin\frac{θ}{2}}&{cos\frac{θ}{2}}\\{cos\frac{3θ}{2}}&{sin\frac{3θ}{2}}\end{array}|$=$\frac{1}{2}$,則sinθ=$±\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}的前n項(xiàng)和Sn,已知a1=2,a2=4,那么S10等于( 。
A.210+2B.29-2C.210-2D.211-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若存在正整數(shù)m,使得f(n)=(2n-7)3n+9(n∈N*)都能被m整除,則m的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x>0,y>0且2x+y=2,則$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin(2x-$\frac{3π}{4}$)

(1)畫出函數(shù)f(x)在區(qū)間[0,π]的簡(jiǎn)圖(要求列表);
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知復(fù)數(shù)$z=\frac{(1-i)+2(1+i)}{2-i}$,若z2+az+b=1-i,
(1)求z;
(2)求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=g(x)的圖象與函數(shù)f(x)=2x+3的圖象關(guān)于直線y=x對(duì)稱,若mn=16(m,n∈R+),則g(m)+g(n)的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=x3-3x2-9x+12在x=3處取得極小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案