設拋物線的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為
A.B.
C.D.
C
由題意知:,準線方程為,則由拋物線的定義知,,設以MF為直徑的圓的圓心為,所以圓方程為,又因為點(0,2),所以,
又因為點M在C上,所以,解得,所以拋物線C的方程為,故選C.
【考點定位】本小題主要考查拋物線的定義、方程、幾何性質(zhì)以及圓的基礎知識,考查數(shù)形結(jié)合、方程、轉(zhuǎn)化與化歸等數(shù)學思想,考查同學們分析問題與解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點與雙曲線的一個焦點重合,它們在第一象限內(nèi)的交點為,且軸垂直,則此雙曲線的離心率為(    )
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在拋物線上有一點,若它到點的距離與它到拋物線的焦點的距離之和最小,則點的坐標是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知過點的直線與拋物線交于兩點,為坐標原點.
(1)若以為直徑的圓經(jīng)過原點,求直線的方程;
(2)若線段的中垂線交軸于點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的焦點與雙曲線的右焦點重合,拋物線的準線與軸的交點為,點在拋物線上且,則△的面積為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為原點,其焦點到直線:的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當點為直線上的定點時,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線C:過點(4,2),則拋物線C的焦點坐標為      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過M(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有(   )條
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分) 將圓O: 上各點的縱坐標變?yōu)樵瓉淼囊话?(橫坐標不變), 得到曲線、拋物線的焦點是直線y=x-1與x軸的交點.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:① 過的焦點;②與交于不同兩
,,且滿足?若存在,求出直線的方程; 若不存在,說明
理由.

查看答案和解析>>

同步練習冊答案