【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側(cè)面A1ABB1 , 且AA1=AB=2

(1)求證:AB⊥BC;
(2)若AC=2 ,求銳二面角A﹣A1C﹣B的大小.

【答案】
(1)證明:如右圖,

取A1B的中點(diǎn)D,連接AD,

因AA1=AB,則AD⊥A1B,

由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC∩側(cè)面A1ABB1=A1B,

得AD⊥平面A1BC,

又BC平面A1BC,

所以AD⊥BC.

因?yàn)槿庵鵄BC﹣﹣﹣A1B1C1是直三棱柱,則AA1⊥底面ABC,

所以AA1⊥BC.

又AA1∩AD=A,從而BC⊥側(cè)面A1ABB1,

又AB側(cè)面A1ABB1,故AB⊥BC


(2)解:過點(diǎn)A作AE⊥A1C于點(diǎn)E,連DE.

由(1)知AD⊥平面A1BC,則AD⊥A1C,且AE∩AD=A,

∴∠AED即為二面角A﹣A1C﹣B的一個(gè)平面角,

且直角△A1AC中:

,

由二面角A﹣A1C﹣B為銳二面角,∴ ,

即二面角A﹣A1C﹣B的大小為


【解析】(1)取A1B的中點(diǎn)D,連接AD,推導(dǎo)出AD⊥A1B,從而AD⊥平面A1BC,進(jìn)而AD⊥BC,由線面垂直得AA1⊥BC,由此能證明AB⊥BC.(2)過點(diǎn)A作AE⊥A1C于點(diǎn)E,連DE,推導(dǎo)出∠AED即為二面角A﹣A1C﹣B的一個(gè)平面角,由此能求出二面角A﹣A1C﹣B的大。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P-ABCD的體積為 ,其三視圖如圖所示,其中正視圖為等腰 三角形,側(cè)視圖為直角三角形,俯視圖是直角梯形.

(1)求正視圖的面積;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是( )
;
②f(x)=x與
③f(x)=x0 ;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)寫出該拋物線的方程及其準(zhǔn)線方程;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),求y1+y2的值及直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的最大值和最小值.
(2)函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax(a>0且a≠1)與函數(shù)y=(a﹣1)x2﹣2x﹣1在同一坐標(biāo)系內(nèi)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的長;
(2)求∠ADC的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程:x2+2(a﹣1)x+2a+6=0.
(Ⅰ)若該方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若該方程有兩個(gè)不等實(shí)數(shù)根,且這兩個(gè)根都大于1,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)f(x)=x2+2(a﹣1)x+2a+6,x∈[﹣1,1],記此函數(shù)的最大值為M(a),最小值為N(a),求M(a),N(a)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案