【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),).
(1)求直線的直角坐標(biāo)方程及曲線的普通方程;
(2)直線和曲線相交于點,,設(shè)相交弦的長度為,求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),曲線在點處的切線方程為.
(1)求實數(shù)的值,并求的單調(diào)區(qū)間;
(2)試比較與的大小,并說明理由;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù),試研究函數(shù)的極值情況;
(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某有機(jī)水果種植基地試驗種植的某水果在售賣前要成箱包裝,每箱80個,每一箱水果在交付顧客之前要按約定標(biāo)準(zhǔn)對水果作檢測,如檢測出不合格品,則更換為合格品.檢測時,先從這一箱水果中任取10個作檢測,再根據(jù)檢測結(jié)果決定是否對余下的所有水果作檢測.設(shè)每個水果為不合格品的概率都為,且各個水果是否為不合格品相互獨立.
(Ⅰ)記10個水果中恰有2個不合格品的概率為,求取最大值時p的值;
(Ⅱ)現(xiàn)對一箱水果檢驗了10個,結(jié)果恰有2個不合格,以(Ⅰ)中確定的作為p的值.已知每個水果的檢測費用為1.5元,若有不合格水果進(jìn)入顧客手中,則種植基地要對每個不合格水果支付a元的賠償費用.
(ⅰ)若不對該箱余下的水果作檢驗,這一箱水果的檢驗費用與賠償費用的和記為X,求EX;
(ⅱ)以檢驗費用與賠償費用和的期望值為決策依據(jù),當(dāng)種植基地要對每個不合格水果支付的賠償費用至少為多少元時,將促使種植基地對這箱余下的所有水果作檢驗?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、、時,其對應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019年10月1日至10月7日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )
A.前4天的方差小于后3天的方差
B.這7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3
C.這7天的平均空氣質(zhì)量狀況為良
D.空氣質(zhì)量狀況為優(yōu)或良的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個調(diào)查學(xué)生記憶力的研究團(tuán)隊從某中學(xué)隨機(jī)挑選100名學(xué)生進(jìn)行記憶測試,通過講解100個陌生單詞后,相隔十分鐘進(jìn)行聽寫測試,間隔時間(分鐘)和答對人數(shù)的統(tǒng)計表格如下:
時間(分鐘) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答對人數(shù) | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
時間與答對人數(shù)的散點圖如圖:
附:,,,,,對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.請根據(jù)表格數(shù)據(jù)回答下列問題:
(1)根據(jù)散點圖判斷,與,哪個更適宣作為線性回歸類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果,建立與的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)
(3)根據(jù)(2)請估算要想記住的內(nèi)容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).
(Ⅰ),使得不等式成立,試求實數(shù)的取值范圍;
(Ⅱ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加 班級工作 | 不太主動參加 班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法能否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?并說明理由.(參考下表)
P(K2 ≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com