若數(shù)列{an}滿足a1=1,
an+1
an
=
n+1
n
,則此數(shù)列是( 。
A、等差數(shù)列
B、等比數(shù)列
C、既是等差數(shù)列又是等比數(shù)列
D、既非等差數(shù)列又非等比數(shù)列
分析:根據(jù)題意可得:an=(
a2
a1
• 
a3
a2
• 
a4
a3
… 
an
an-1
)•a1
=n,再利用等差數(shù)列的定義進(jìn)行證明即可.
解答:解:因?yàn)?span id="qm6k1mq" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
an+1
an
=
n+1
n

所以
a2
a1
=
2
1
,
a3
a2
=
3
2
,
a4
a3
=
4
3
an
an-1
=
n
n-1

所以an=(
a2
a1
• 
a3
a2
• 
a4
a3
… 
an
an-1
)•a1
=n,
所以an=n,an-1=n-1,所以an-an-1=1,所以數(shù)列{an}是等差數(shù)列.
故選A.
點(diǎn)評(píng):本題主要考查了數(shù)列的遞推式.解題的關(guān)鍵是從遞推式中找到規(guī)律,進(jìn)而求得數(shù)列的通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)于數(shù)列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)若數(shù)列{an}滿足an+12-
a
2
n
=d
(d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于
1
m
,那么正數(shù)m的最小取值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個(gè)數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項(xiàng)差的絕對(duì)值小于,那么正數(shù)m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案