解:(1)根據(jù)函數(shù)y=Asin(ωx+φ)(A>0,|φ|<
,ω>0)的圖象可得A=2,
再把點(diǎn)(0,1)代入可得2sinφ=1,即sinφ=
,∴φ=
,故函數(shù)y=2sin(ωx+
).
再把點(diǎn)(
,0)代入可得 2sin(
ω+
)=0,
結(jié)合五點(diǎn)法作圖可得
ω+
=2π,∴ω=2.
∴f(x)=2sin(2x+
).
(2)設(shè)2x+
=B,則函數(shù)y=2sinB的對(duì)稱軸方程為B=
+kπ,k∈Z,
即2x+
=
+kπ(k∈Z),解上式可得x=
+
,(k∈Z),
∴f(x)=2sin(2x+
)對(duì)稱軸方程為x=
+
(k∈Z).
分析:(1)由函數(shù)的圖象可得A=2,把點(diǎn)(0,1)代入函數(shù)的解析式求得φ的值,再把點(diǎn)(
,0)代入函數(shù)解析式求得ω的值,從而可得函數(shù)的解析式.
(2)設(shè)2x+
=B,則函數(shù)y=2sinB的對(duì)稱軸方程為B=
+kπ,k∈Z,即2x+
=
+kπ(k∈Z),由此可得對(duì)稱軸方程.
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求解析式,正弦函數(shù)的對(duì)稱性,屬于中檔題.