已知圓C的方程是,直線的方程是.

(1)判斷該圓與直線的位置關系;

(2)求圓上的點到直線距離的最大值和最小值。

解析:(1)圓C的方程是,即,

            圓心(2,2)到直線的距離,

            所以 圓C與直線相離

(2)由(1)可知

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知L為過點P(-
3
3
2
,-
3
2
)
且傾斜角為30°的直線,圓C為圓心是坐標原點且半徑等于1的圓,Q表示頂點在原點而焦點是(
2
8
,0)
的拋物線,設A為L和C在第三象限的交點,B為C和Q在第四象限的交點.
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達式.
(3)設P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建福州市畢業(yè)班質量檢查文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:的離心率為,

直線:y=x+2與原點為圓心,以橢圓C的短軸長為直

徑的圓相切.

 (Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線與橢圓交于,兩點.設直線的斜率,在軸上是否存在點,使得是以GH為底邊的等腰三角形. 如果存在,求出實數(shù)的取值范圍,如果不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

        已知橢圓C的中心在的點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點,M是橢圓短軸的一個端點,過F1的直線與橢圓交于A,B兩點,的面積為4,的周長為

   (I)求橢圓C的方程;

   (II)設點Q的從標為(1,0),是否存在橢圓上的點P及以Q為圓心的一個圓,使得該圓與直

線PF1,PF2都相切,若存在,求出P點坐標及圓的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:1978年全國統(tǒng)一高考數(shù)學試卷(附加題)(解析版) 題型:解答題

已知L為過點P且傾斜角為30°的直線,圓C為圓心是坐標原點且半徑等于1的圓,Q表示頂點在原點而焦點是的拋物線,設A為L和C在第三象限的交點,B為C和Q在第四象限的交點.
(1)寫出直線L、圓C和拋物線Q的方程,并作草圖.
(2)寫出線段PA、圓弧AB和拋物線上OB一段的函數(shù)表達式.
(3)設P′、B′依次為從P、B到x軸的垂足,求由圓弧AB和直線段BB′、B′P′、P′P、PA所包含的面積.

查看答案和解析>>

同步練習冊答案