函數(shù)y=x3-3x2+3在(1,1)處的切線方程為( 。
A、y=-3x+4
B、y=3x-4
C、y=-4x+3
D、y=4x-3
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=f′(x)=3x2-6x,
在(1,1)處的切線斜率k=f′(1)=3-6=-3,
即函數(shù)y=x3-3x2+3在(1,1)處的切線方程為y-1=-3(x-1),
即y=-3x+4,
故選:A
點評:本題主要考查函數(shù)的切線方程,利用導(dǎo)數(shù)的幾何意義求出切線斜率是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,對于任意相鄰三點都不共線的有序整點列(整點即橫縱坐標(biāo)都是整數(shù)的點)A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,B(n),其中n≥3,若同時滿足:①兩點列的起點和終點分別相同;②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點列.則A(3):A1(0,2),A2(3,0)),A3(5,2)的正交點列B(3)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α∥平面β,直線a?α,直線b?β,則直線a與b的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3x
•sinx,則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O為ABC內(nèi)部任意一點,邊AO并延長交對邊于A′,則
AO
AA′
=
S四邊形ABOC
S△ABC
,同理邊BO,CO并延長,分別交對邊于B′,C′,這樣可以推出
AO
AA′
+
BO
BB′
+
CO
CC′
=
 
;類似的,若O為四面體ABCD內(nèi)部任意一點,連AO,BO,CO,DO并延長,分別交相對面于A′,B′,C′,D′,則
AO
AA′
+
BO
BB′
+
CO
CC′
+
DO
DD′
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
4
),為了得到函數(shù)g(x)=sin2x的圖象,只需將函數(shù)y=f(x)的圖象(  )
A、向右平移
π
8
個單位長度
B、向右平移
π
4
個單位長度
C、向左平移
π
8
個單位長度
D、向左平移
π
4
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,點P在橢圓上,且
PF1
PF2
=0,tan∠PF1F2=
3
3
,則該橢圓的離心率為( 。
A、
1+
3
2
B、
3
-1
C、
3
-1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2 x2,它的增區(qū)間為(  )
A、(-∞,-1)
B、(-∞,0)
C、(0,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,下列四個命題中為真命題的是( 。
①若|a|>b,則a2>b2
②若a2>b2,則|a|>b
③若a>|b|,則a2>b2
④若a2>b2,則a>|b|
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步練習(xí)冊答案