【題目】已知橢圓 的兩個(gè)焦點(diǎn)分別為 , ,且經(jīng)過點(diǎn) .
(Ⅰ)求橢圓 的標(biāo)準(zhǔn)方程;
(Ⅱ) 的頂點(diǎn)都在橢圓 上,其中 關(guān)于原點(diǎn)對稱,試問 能否為正三角形?并說明理由.

【答案】解:(Ⅰ)設(shè)橢圓 的標(biāo)準(zhǔn)方程為 ,
依題意得 ,
,
所以 , ,
故橢圓 的標(biāo)準(zhǔn)方程為 .
(Ⅱ)若 為正三角形,則 ,

顯然直線 的斜率存在且不為0,
設(shè) 方程為 ,
的方程為 ,聯(lián)立方程
解得 , ,
所以
同理可得 .
,所以 ,
化簡得 無實(shí)數(shù)解,
所以 不可能為正三角形
【解析】(Ⅰ)根據(jù)題目中所給的條件的特點(diǎn),設(shè)出橢圓的標(biāo)準(zhǔn)方程并得到c,再由定義求得a,結(jié)合條件求得b,橢圓方程可求;
(Ⅱ)根據(jù)題意,直線AB的斜率存在且不為0,設(shè)AB方程為y=kx,寫出直線OC的方程,分別聯(lián)立直線方程與橢圓方程,求出A,C的坐標(biāo),得到|OC|與|OA|,代入條件得出k無實(shí)數(shù)解,說明△ABC不可能為正三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)的中點(diǎn).

)求證: 平面;

)已知平面底面,且.在棱上是否存在點(diǎn),使?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點(diǎn)的正北方向的處建一倉庫,并在公路同側(cè)建造一個(gè)正方形無頂中轉(zhuǎn)站(其中邊上),現(xiàn)從倉庫和中轉(zhuǎn)站分別修兩條道路,,已知,且,設(shè),

(1)求關(guān)于的函數(shù)解析式

(2)如果中轉(zhuǎn)站四周圍墻(即正方形周長)造價(jià)為萬元,兩條道路造價(jià)為萬元,問:取何值時(shí),該公司建中轉(zhuǎn)圍墻和兩條道路總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形 的三個(gè)頂點(diǎn)坐標(biāo)為 , .
(Ⅰ)求頂點(diǎn) 的坐標(biāo);
(Ⅱ)求四邊形 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn)知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系: (其中c為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如P0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)出1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);

(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足 ,它的前項(xiàng)和為,且

(Ⅰ)求

(Ⅱ)已知等比數(shù)列滿足, ,設(shè)數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種商品,在某周內(nèi)獲純利(元)與該周每天銷售這種商品數(shù)之間的一組數(shù)據(jù)關(guān)系如表:

(I)畫出散點(diǎn)圖;

(II)求純利與每天銷售件數(shù)之間的回歸直線方程;

(III)估計(jì)當(dāng)每天銷售的件數(shù)為12件時(shí),每周內(nèi)獲得的純利為多少?

附注:

,,,.

查看答案和解析>>

同步練習(xí)冊答案