已知命題p:3是奇數(shù),命題q:矩形的對(duì)角線互相垂直且平分,由它們構(gòu)成的“p∨q”,“p∧q”,“?p”形式的命題中,真命題有______ 個(gè).
由3是奇數(shù),得p為真命題
由矩形的對(duì)角線互相平分但不垂直,得q為假命題
∵p真q假,
∴“p∨q”為真,“p∧q”為假,“?p”為假.
故答案為1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:3是奇數(shù),命題q:矩形的對(duì)角線互相垂直且平分,由它們構(gòu)成的“p∨q”,“p∧q”,“?p”形式的命題中,真命題有
1
1
 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請(qǐng)說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)中當(dāng)時(shí),則

,其中是大于等于的整數(shù)

反之當(dāng)時(shí),其中是大于等于的整數(shù),則

顯然,其中

滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

結(jié)合二項(xiàng)式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

   由,得

當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年福建省泉州市惠安縣惠南中學(xué)高二(上)期末數(shù)學(xué)試卷(選修2-1)(理科)(解析版) 題型:填空題

已知命題p:3是奇數(shù),命題q:矩形的對(duì)角線互相垂直且平分,由它們構(gòu)成的“p∨q”,“p∧q”,“¬p”形式的命題中,真命題有     個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案