【題目】對于兩個定義域相同的函數(shù)f(x)、g(x),若存在實數(shù)m,n,使h(x)=mf(x)+ng(x),則稱函數(shù)f(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1)”生成一個函數(shù)h(x),使得h(x)滿足:
①是偶函數(shù),②有最小值1,求h(x)的解析式.
【答案】
(1)解:f(x)=x2+3x和g(x)=3x+4生成一個偶函數(shù)h(x),則有h(x)=mx2+3(m+n)x+4n,
h(﹣x)=mx2﹣3(m+n)x+4n=mx2+3(m+n)x+4n,
∴m+n=0,
故得h(x)=mx2﹣4m,
∴h(2)=0
(2)解:設h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b)=mx2+(am+n)x+nb.
∴m=2,am+n=3,nb=﹣1,
則a= ,b= .
所以: = = ,
∵a,b∈R且ab≠0,
∴ 的取值范圍為[﹣ ,0)∪(0,+∞)
(3)解:設h(x)=m(log4(4x+1))+n(x﹣1),
∵h(x)是偶函數(shù),
∴h(﹣x)﹣h(x)=0,
即m(log4(4﹣x+1))+n(﹣x﹣1)﹣m(log4(4x+1))﹣n(x﹣1)=0,
∴(m+2n)x=0,可得:m=﹣2n.
則h(x)=﹣2n(log4(4x+1))+n(x﹣1)=﹣2n[log4(4x+1)﹣ ]
=﹣2n[log4(2x+ )+ ],
∵h(x)有最小值1,則必有n<0,且有﹣2n=1,
∴m=1,n= ,
故得h(x)=log4(4x+1) (x﹣1)
【解析】(1)先用待定系數(shù)法表示出偶函數(shù)h(x),再根據(jù)其是偶函數(shù)這一性質得到引入?yún)?shù)的方程,求出參數(shù)的值,即得函數(shù)的解析式,代入自變量求值即可.(2)設h(x)=2x2+3x﹣1=m(x2+ax)+n(x+b),展開后整理,利用待定系數(shù)法找到a,b的關系,由系數(shù)相等把a,b用n表示,然后結合n的范圍求解 的取值范圍;(3)設h(x)=m(log4(4x+1))+n(x﹣1),h(x)是偶函數(shù),則h(﹣x)﹣h(x)=0,可得m與n的關系,h(x)有最小值則必有n<0,且有﹣2n=1,求出m和n值,可得解析式.
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調性的判斷函數(shù)的最大(小)值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎,若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=k﹣2i(k∈R)的共軛復數(shù) ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過點(0,﹣2)的直線l的斜率為k,求直線l與曲線y= 以及y軸所圍成的圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在直角坐標系中圓C的參數(shù)方程為(為參數(shù)),以原點O為極點, 軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為
(1)求圓C的直角坐標方程及其圓心C的直角坐標;
(2)設直線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=(a2﹣3a+3)ax是指數(shù)函數(shù),試確定函數(shù)y=loga(x+1)在區(qū)間(0,3)上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各式中,所得數(shù)值最小的是( )
A.sin50°cos39°﹣sin40°cos51°
B.﹣2sin240°+1
C.2sin6°cos6°
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】3個人坐在一排6個座位上,問:
(1)3個人都相鄰的坐法有多少種?
(2)空位都不相鄰的坐法有多少種?
(3)空位至少有2個相鄰的坐法有多少種?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com