已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過(guò)點(diǎn)A(1,m)(m≠-2)可作曲線(xiàn)y=f(x)的三條切線(xiàn),求實(shí)數(shù)m的范圍.
分析:(1)解析式中有兩個(gè)參數(shù),故需要得到兩個(gè)方程求參數(shù),由于函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值,由極值存在的條件恰好可以得到兩個(gè)關(guān)于參數(shù)的兩個(gè)方程,由此解析式易求.
(2)欲證對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4,可以求出函數(shù)在區(qū)間[-1,1]上的最值,若最大值減去最小值的差小于等于4,則問(wèn)題得到證明,故問(wèn)題轉(zhuǎn)化為研究函數(shù)在區(qū)間[-1,1]上的單調(diào)性求最值的問(wèn)題.
(3)由于點(diǎn)A(1,m)(m≠-2),驗(yàn)證知此點(diǎn)不在函數(shù)圖象上,可設(shè)出切點(diǎn)坐標(biāo)M(x0,y0),然后用兩種方式表示出斜率,建立關(guān)于切點(diǎn)橫坐標(biāo)的方程2x03-3x02+m+3=0,再借助函數(shù)的單調(diào)性與極值確定其有三個(gè)解的條件即可.
解答:解:(1)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,解得a=1,b=0.
∴f(x)=x3-3x
(2)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
當(dāng)-1<x<1時(shí),f′(x)<0,故f(x)在區(qū)間[-1,1]上為減函數(shù),
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4
(3)f′(x)=3x2-3=3(x+1)(x-1),
∵曲線(xiàn)方程為y=x3-3x,∴點(diǎn)A(1,m)不在曲線(xiàn)上.
設(shè)切點(diǎn)為M(x0,y0),切線(xiàn)的斜率為3(
x
2
0
-1)=
x
3
0
-3
x
 
0
-m
x
 
0
-1
(左邊用導(dǎo)數(shù)求出,右邊用斜率的兩點(diǎn)式求出),
整理得2x03-3x02+m+3=0.
∵過(guò)點(diǎn)A(1,m)可作曲線(xiàn)的三條切線(xiàn),故此方程有三個(gè)不同解,下研究方程解有三個(gè)時(shí)參數(shù)所滿(mǎn)足的條件
設(shè)g(x0)=2x03-3x02+m+3,則g′(x0)=6x02-6x0,
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
∴函數(shù)g(x0)=2x03-3x02+m+3的極值點(diǎn)為x0=0,x0=1
∴關(guān)于x0方程2x03-3x02+m+3=0有三個(gè)實(shí)根的充要條件是
g(0)>0
g(1)<0
,解得-3<m<-2.
故所求的實(shí)數(shù)a的取值范圍是-3<m<-2.
點(diǎn)評(píng):本題考點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)極值存在的條件,利用導(dǎo)數(shù)求函數(shù)最值的方法以及導(dǎo)數(shù)研究函數(shù)在某點(diǎn)切線(xiàn)的問(wèn)題,本題涉及到了求導(dǎo)公式,求最值的方法,導(dǎo)數(shù)的幾何意義等,綜合性強(qiáng),難度較大,解題時(shí)注意體會(huì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案