解答:解:(1)當(dāng)a=0時(shí),
f(x)=x3-x2+1,
∴f(3)=1,
∵f'(x)=x
2-2x-----------------------------(2分)
∴曲線在點(diǎn)(3,1)處的切線的斜率k=f'(3)=3
∴所求的切線方程為y-1=3(x-3),即y=3x-8----------------(4分)
(2)∵f'(x)=x
2-2(2a+1)x+3a(a+2)=(x-3a)(x-a-2)
∴x
1=3a,x
2=a+2-----------------------------------------------(6分)
①當(dāng)x
1=x
2時(shí),3a=a+2,解得a=1,這時(shí)x
1=x
2=3,函數(shù)y=f'(x)在(0,4)上有唯一的零點(diǎn),故a=1為所求;(7分)
②當(dāng)x
1>x
2時(shí),即3a>a+2⇒a>1,這時(shí)x
1>x
2>3,
又函數(shù)y=f'(x)在(0,4)上有唯一的零點(diǎn),
∴
⇒⇒≤a<2,-----------------------(10分)
③當(dāng)x
1<x
2時(shí),即a<1,這時(shí)x
1<x
2<3
又函數(shù)y=f'(x)在(0,4)上有唯一的零點(diǎn),
∴
⇒⇒-2<a≤0------------------------(13分)
綜上得當(dāng)函數(shù)y=f'(x)在(0,4)上有唯一的零點(diǎn)時(shí),-2<a≤0或
≤a<2或a=1.----------------(14分)