試題分析:圓
的圓心為坐標(biāo)原點,半徑為
,又因為
,所以圓心到弦
的距離為
,設(shè)
中點的坐標(biāo)為
,所以
,即
.
點評:求軌跡方程,要把握“求誰設(shè)誰”的原則,方法主要有“相關(guān)點法”和“直接代入法”等.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知:以點C (t,
)(t∈R , t ≠ 0)為圓心的圓與
軸交于點O, A,
與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點M, N,若
,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分)
求圓心在直線
上,且經(jīng)過圓
與圓
的交點的圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
圓
關(guān)于直線
的對稱圓方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系
中,圓
的方程為
,若直線
上至少存在一點,使得以該點為圓心,1為半徑的圓與圓
有公共點,則
的最大值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分) 已知圓
過兩點
,且圓心
在
上.
(1)求圓
的方程;
(2)設(shè)
是直線
上的動點,
是圓
的兩條切線,
為切點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知圓
與拋物線
的準(zhǔn)線相切,則
的值為()
A.1 | B.2 | C. | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)已知橢圓
上的動點到焦點距離的最小值為
。以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點, 且滿足
(
為坐標(biāo)原點)。當(dāng)
時,求實數(shù)
的值.
查看答案和解析>>