【題目】設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(﹣1,0).
(1)當(dāng)l與x軸垂直時,求△ABM的外接圓方程;
(2)記△AMF的面積為S1,△BMF的面積為S2,當(dāng)S1=4S2時,求直線l的方程.
【答案】(1)x2+y2﹣2x﹣3=0;(2)xy+1
【解析】
(1)由題意求出,的坐標(biāo),設(shè)圓的一般方程,將,,坐標(biāo)代入圓的方程求出參數(shù),即求出圓的方程;(2)由題意得面積之比為縱坐標(biāo)的絕對值之比,求出坐標(biāo)的關(guān)系,代入拋物線方程,求出的方程.
(1)由題意得:焦點(diǎn)F(1,0),
當(dāng)l與x軸垂直時,l的方程:x=1,代入拋物線得A(1,2),B(1,﹣2),
而M(﹣1,0)設(shè)△ABMD的外接圓的方程:x2+y2+Dx+Ey+F=0,
所以:解得:D=﹣2,E=0,F=﹣3,
所以△ABM的外接圓方程:x2+y2﹣2x﹣3=0;
(2)由題意的直線l的斜率不為零,設(shè)直線l的方程:x=my+1,A(x,y),B(x',y'),
設(shè)A在x軸上方,聯(lián)立拋物線的方程可得y2﹣4my﹣4=0,y+y'=4m,
由題意知:y=﹣4y',
∴y',代入直線得x'1,B在拋物線上,
所以:()2﹣4(1)=0,解得m,
所以直線l的方程:xy+1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程是,求函數(shù)在上的值域;
(2)當(dāng)時,記函數(shù),若函數(shù)有三個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點(diǎn)的大圓有且只有一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,若以,為焦點(diǎn)的雙曲線的漸近線經(jīng)過點(diǎn),則該雙曲線的離心率為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為,且過點(diǎn),點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PA交y軸于點(diǎn)C,PB交x軸于點(diǎn)D.
(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著高考制度的改革,某省即將實(shí)施“語數(shù)外+3”新高考的方案,2019年秋季入學(xué)的高一新生將面臨從物理(物)、化學(xué)(化)、生物(生)、政治(政)、歷史(歷)、地理(地)六科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”某市為了順利地迎接新高考改革,在某高中200名學(xué)生中進(jìn)行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合中選擇一種學(xué)習(xí)模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 | 物政歷 | 物政地 | 物歷地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 5人 | 15人 | 10人 | 5人 | 0人 | 5人 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 合計(jì) |
化生政 | 化生歷 | 化生地 | 化政歷 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | |
5人 | … | … | … | … | … | 10人 | 5人 | … | 25人 | 200人 |
為了解學(xué)生成績與學(xué)生模擬選課情況之問的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析
(l)樣本中選擇組合20號“政歷地”的有多少人?若以樣本頻率作為概率,求該高中學(xué)生不選物理學(xué)科的概率?
(Ⅱ)從樣本中選擇學(xué)習(xí)生物且學(xué)習(xí)政治的學(xué)生中隨機(jī)抽取3人,求這3人中至少有一人還學(xué)習(xí)歷史的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓: 上動點(diǎn)PQ,O為原點(diǎn);
(1)若,求證:為定值;
(2)點(diǎn),若,求證:直線過定點(diǎn);
(3)若,求證:直線為定圓的切線;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)有兩個極值點(diǎn),若過兩點(diǎn)的直線與軸的交點(diǎn)在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且長軸長是短軸長的2倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)在橢圓上運(yùn)動,點(diǎn)在圓上運(yùn)動,且總有,求的取值范圍;
(3)過點(diǎn)的動直線交橢圓于、兩點(diǎn),試問:在此坐標(biāo)平面上是否存在一個點(diǎn),使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點(diǎn)?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com