已知.

(1)求的最小值及取最小值時的集合;
(2)求時的值域;
(3)在給出的直角坐標系中,請畫出在區(qū)間上的圖像(要求列表,描點).
(1)當;(2);(3)詳見解析.

試題分析:先根據(jù)平方差公式、同角三角函數(shù)的基本關(guān)系式、二倍角公式化簡所給的函數(shù).(1)將看成整體,然后由正弦函數(shù)的最值可確定函數(shù)的最小值,并明確此時的值的集合;(2)先求出的范圍為,從而,然后可求出時,函數(shù)的值域;(3)根據(jù)正弦函數(shù)的五點作圖法進行列表、描點、連線完成作圖.
試題解析:化簡



  4分
(1)當時,取得最小值,此時,故此時的集合為  6分
(2)當時,所以,所以,從而  9分
(3)由




0











1

1
3

                                  11分
在區(qū)間上的圖象如圖所示:
     13分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象的一個最高點為與之相鄰的與軸的一個交點為
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)減區(qū)間和函數(shù)圖象的對稱軸方程;
(3)用“五點法”作出函數(shù)在長度為一個周期區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中),滿足.
(Ⅰ)求函數(shù)的最小正周期的值;
(Ⅱ)當時,求函數(shù)的最小值,并且求使函數(shù)取得最小值的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是函數(shù)在一個周期內(nèi)的圖象,則其解析式是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù),
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的最大值為2,周期為
(1)確定函數(shù)的解析式,并由此求出函數(shù)的單調(diào)增區(qū)間;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知角的頂點在原點,始邊與軸的正半軸重合,終邊經(jīng)過點.
(Ⅰ)求的值;
(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了得到函數(shù)的圖像,只需把函數(shù)的圖像上所有的點(   )
A.向右平移個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
B.向左平移個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
C.向右平移個單位長度,再把所得各點的橫坐標縮短到原來的倍(縱坐標不變)
D.向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍(縱坐標不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)圖像的一條對稱軸方程是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案