已知函數(shù)f(x)=4cos x·sina的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
(1)π(2),k∈Z
(1)f(x)=4cos x·sina=4cos x·a=2sin xcos x+2cos2x-1+1+asin 2x+cos 2x+1+a=2sin+1+a.
∴當sin=1時,f(x)取得最大值2+1+a=3+a,
f(x)的最大值為2,∴3+a=2,即a=-1.
f(x)的最小正周期為T=π.
(2)由(1),得f(x)=2sin,∴-+2kπ≤2x+2kπ,k∈Z,
得-+2kπ≤2x+2kπ,k∈Z.∴-kπ≤xkπ,k∈Z.
f(x)的單調(diào)遞增區(qū)間為k∈Z.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的部分圖像如圖所示.

(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)y="Asin(ωx+φ)" (A>0,ω>0,|φ|<π)的 一段圖象如圖所示

(1)求函數(shù)的解析式;
(2)求這個函數(shù)的單調(diào)增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=ln|x-1|的圖象與函數(shù)y=-2cosπx(-2≤x≤4)的圖象所有交點的橫坐標之和等于(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=2sin.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f=-,求f(x0)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<αx<π.
(1)若α,求函數(shù)f(x)=b·c的最小值及相應x的值;
(2)若ab的夾角為,且ac,求tan 2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)f(x)=sin +sin  (ω>0)的最小正周期為π,則(  )
A.f(x)在上單調(diào)遞減B.f(x)在上單調(diào)遞增
C.f(x)在上單調(diào)遞增D.f(x)在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=的單調(diào)遞增區(qū)間為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為得到函數(shù)y=cos的圖像,只需要將函數(shù)y=sin 2x的圖像(  )
A.向左平移個單位B.向右平移個單位
C.向左平移個單位D.向右平移個單位

查看答案和解析>>

同步練習冊答案