(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.

(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;

(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn).若l與圓x2+y2=1相切,求證:OP⊥OQ;

 

【答案】

(1) S=|OA||y|=.(2)見解析。 

【解析】(1)先把雙曲線的方程化成標(biāo)準(zhǔn)方程可求出a值,從而得到左頂點(diǎn)A,漸近線方程:y=±x,然后可設(shè)出過點(diǎn)A與漸近線y=x平行的直線方程為y=,即y=x+1.它再與另一條漸近線方程聯(lián)立解方程組可求出交點(diǎn)坐標(biāo),從而得到所求三角形的高,度顯然等于|OA|,面積得解.

(2) 設(shè)直線PQ的方程是y=x+b,因直線PQ與已知圓相切,

=1,即b2=2.

得x2-2bx-b2-1=0(*)

設(shè)P(x1,y1)、Q(x2,y2),然后證·=x1x2+y1y2=x1x2+(x1+b)(x2+b)=2x1x2+b(x1+x2)+b2,借助(*)式方程中的韋達(dá)定理代入此式證明·=0即可.

(1)雙曲線C1-y2=1,左頂點(diǎn)A,漸近線方程:y=±x.

過點(diǎn)A與漸近線y=x平行的直線方程為y=,即y=x+1.

解方程組

所以所求三角形的面積為S=|OA||y|=.

(2)設(shè)直線PQ的方程是y=x+b,因直線PQ與已知圓相切,

=1,即b2=2.

得x2-2bx-b2-1=0.

設(shè)P(x1,y1)、Q(x2,y2),則

又y1y2=(x1+b)(x2+b),所以

·=x1x2+y1y2=2x1x2+b(x1+x2)+b2

=2(-1-b2)+2b2+b2=b2-2=0.

故OP⊥OQ.        

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案