【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

【答案】A
【解析】解:過C作CF⊥AD,垂足為F,連接BF,

∵BC⊥AD,CF⊥AD,BC∩CF=C,

∴AD⊥平面BCF,

∴VA﹣BCD= S△BCFAD=2S△BCF

又∠ACD=∠ABD,AD⊥平面BCF,

∴△ACD≌△ABD,∴CF=BF,

取BC的中點E,則EF⊥BC,

∴2S△ADE=2× ×BC×EF=6EF,

∴當(dāng)EF最大時,棱錐的體積取得最大值.

又EF= = ,故當(dāng)CF最大時,棱錐體積最大,

∵∠ACD=60°,AD=6,∴當(dāng)AC=CD時,CF取得最大值,

此時CF= =3 ,∴EF=3

∴棱錐的體積最大值為6EF=18

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項均為非負(fù)整數(shù)的數(shù)列{an}同時滿足下列條件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當(dāng)m=5時,寫出數(shù)列{an}的前五項;
(Ⅱ)若數(shù)列{an}的前三項互不相等,且n≥3時,an為常數(shù),求m的值;
(Ⅲ)求證:對任意正整數(shù)m,存在正整數(shù)M,使得n≥M時,an為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過橢圓M: =1(a>b>0)焦點的直線x+y﹣2 =0交M于P,Q兩點,G為PQ的中點,且OG的斜率為9.
(1)求M的方程;
(2)A、B是M的左、右頂點,C、D是M上的兩點,若AC⊥BD,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代的天文學(xué)和數(shù)學(xué)著作《周髀算經(jīng)》中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(guǐ)長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長的變化量相同,周而復(fù)始.若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長是(
A.五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2 cos( ﹣θ)
(1)求曲線C的直角坐標(biāo)方程;
(2)已知直線l過點P(1,0)且與曲線C交于A,B兩點,若|PA|+|PB|= ,求直線l的傾斜角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線E:x2=2py(p>0)焦點F且傾斜角的60°直線l與拋物線E交于點M,N,△OMN的面積為4.
(1)求拋物線E的方程;
(2)設(shè)P是直線y=﹣2上的一個動點,過P作拋物線E的切線,切點分別為A、B,直線AB與直線OP、y軸的交點分別為Q、R,點C、D是以R為圓心、RQ為半徑的圓上任意兩點,求∠CPD最大時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合 ,定義了一種運算“ ”,使得集合 中的元素間滿足條件:如果存在元素 ,使得對任意 ,都有 ,則稱元素 是集合 對運算“ ”的單位元素.例如: ,運算“ ”為普通乘法;存在 ,使得對任意 ,都有 ,所以元素 是集合 對普通乘法的單位元素.
下面給出三個集合及相應(yīng)的運算“ ”:
,運算“ ”為普通減法;
表示 階矩陣, },運算“ ”為矩陣加法;
(其中 是任意非空集合),運算“ ”為求兩個集合的交集.
其中對運算“ ”有單位元素的集合序號為( )
A.①②;
B.①③;
C.①②③;
D.②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)學(xué)上所說的“三高”通常是指血脂增高、血壓增高、血糖增高等疾。疄榱私狻叭摺奔膊∈欠衽c性別有關(guān),醫(yī)院隨機(jī)對入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請將列聯(lián)表補充完整;

患三高疾病

不患三高疾病

合計

6

30

合計

36


(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為患“三高”疾病與性別有關(guān)? 下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當(dāng)k≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案