在極坐標(biāo)系中,過點(diǎn)(2
3
,
π
3
)
作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:直線與圓
分析:求出極坐標(biāo)的直角坐標(biāo),極坐標(biāo)方程的直角坐標(biāo)方程,然后求出切線方程,轉(zhuǎn)化為極坐標(biāo)方程即可.
解答: 解:(2
3
,
π
3
)
的直角坐標(biāo)為:(
3
,3),
圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0,圓心坐標(biāo)(0,2),半徑為:2,
∵點(diǎn)(
3
,3)在圓x2+y2-4y=0上,
∴切線的斜率為-
3

∴過(
3
,3)與圓相切的直線方程為:y-3=-
3
(x-
3
),即
3
x+y-6=0,
∴切線的極坐標(biāo)方程是:
3
ρcosθ+ρsinθ-6=0.
故答案為:
3
ρcosθ+ρsinθ-6=0.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查極坐標(biāo)與直角坐標(biāo)方程的互化,考查計(jì)算能力,轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asin3x-(a+2)cosx+a2+2a在R上是奇函數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在x=-4,-1,0,3中,滿足不等式組
x<2
2(x+1)>-2
的x值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|1<x<4},B={x|x≥2},則A∩∁UB=( 。
A、{x|1<x≤2}
B、{x|2<x<4}
C、{x|1<x<2}
D、{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的圓心在直線x-2y+4=0上,且與x軸交于兩點(diǎn)A(-5,0),B(1,0).
(Ⅰ)求圓M的方程;
(Ⅱ)求過點(diǎn)C(1,2)的圓M的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在5瓶飲料中,有2瓶已過保質(zhì)期.從這5瓶飲料中任取2瓶,則至少取到1瓶已過保質(zhì)期的概率為
 
.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)對(duì)任意x∈R都有f(x)=-
1
f(x-3)
且當(dāng)x∈[-3,-2]時(shí)f(x)=4x,則f(119.5)=(  )
A、10
B、-10
C、
1
10
D、-
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從區(qū)間[0,1]內(nèi)任取兩個(gè)數(shù),則這兩個(gè)數(shù)的和小于
1
2
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
x
+1)=x+2
x
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案