雙曲線與橢圓
x2
4
+y2=1有相同的焦點F1、F2,P在雙曲線的右支上,且PF2⊥F1F2,∠PF1F2=30°,則雙曲線的方程是
 
考點:雙曲線的簡單性質(zhì),橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓方程可得雙曲線的c=
3
,設(shè)雙曲線方程為:
x2
a2
-
y2
b2
=1.又PF2⊥F1F2,則令x=c,求得y=
b2
a
,即PF2=
b2
a
,再由∠PF1F2=30°,則PF2=tan30°F1F2,即可得到a,b的方程,再由a2+b2=3,即可解得a,b,進而得到雙曲線方程.
解答: 解:橢圓
x2
4
+y2=1的焦點F1(-
3
,0),F(xiàn)2
3
,0),
則雙曲線的c=
3
,設(shè)雙曲線方程為:
x2
a2
-
y2
b2
=1.
又PF2⊥F1F2,則令x=c,求得y=
b2
a
,即PF2=
b2
a
,
再由∠PF1F2=30°,則PF2=tan30°F1F2,
即有
b2
a
=
3
3
•2c=2,且a2+b2=3,
即可解得,a=1,b=
2

則雙曲線方程為:x2-
y2
2
=1.
故答案為:x2-
y2
2
=1.
點評:本題主要考查了橢圓、雙曲線的簡單性質(zhì),特別是雙曲線方程的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,曲線y=x2-6x+5與坐標(biāo)軸的交點都在圓C上.
(Ⅰ)求圓的方程;
(Ⅱ)求過點(2,4)的直線被該圓截得的弦長最小時的直線方程以及最小弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10件產(chǎn)品中有3件是次品,現(xiàn)任取2件,其中最多有1件是次品的概率是
 
(用古典概率解).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1+an=2n-3,若a1=2則a21-a20=( 。
A、9B、7C、5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=2.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
3
,x,y),則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測量隧道兩口之間AB的長度,對給出的四組數(shù)據(jù),求解計算時,較為簡便易行的一組是( 。
A、a,b,γ
B、a,b,α
C、a,b,β
D、α,β,a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+
1
ex

(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若對所有x≤0都有f(x)≥ax+1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0|)的圖象如下圖所示,則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
(1)奇函數(shù)f(x)在(-∞,0)上增函數(shù),則(0,+∞)上也是增函數(shù);
(2)命題“若x2-3x+2=0,則x=1”的否命題是“若x2-3x+2=0,則x≠1”;
(3)y=x2-2|x|-3的單調(diào)遞增區(qū)間為[1,+∞);
(4)已知函數(shù)f(x)滿足2f(x)=f(
1
x
)+
3
x
,則f(x)的最小值為2
2

其中正確結(jié)論的是
 
(填寫正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案