已知P為拋物線y=x2上的動(dòng)點(diǎn),定點(diǎn)A(a,0)關(guān)于P點(diǎn)的對(duì)稱點(diǎn)是Q,
(1)求點(diǎn)Q的軌跡方程;
(2)若(1)中的軌跡與拋物線y=x2交于B、C兩點(diǎn),當(dāng)AB⊥AC時(shí),求a的值.
分析:(1)設(shè)出P,Q兩點(diǎn)的坐標(biāo),根據(jù)定點(diǎn)A(a,0)關(guān)于P點(diǎn)的對(duì)稱點(diǎn)是Q,寫出中點(diǎn)的坐標(biāo)公式,用a,x表示x0,y0,根據(jù)這是曲線上的一點(diǎn),代入曲線的方程,得到要求的點(diǎn)的軌跡.
(2)兩個(gè)曲線相交的問題,需要把兩個(gè)曲線的方程聯(lián)立,得到關(guān)于x的方程,根據(jù)有兩個(gè)交點(diǎn),得到方程有兩個(gè)實(shí)根,根據(jù)判別式和根與系數(shù)的關(guān)系,再根據(jù)垂直的關(guān)系得到結(jié)果.
解答:解:(1)設(shè)Q(x,y)、P(x0,y0
∵  A、Q關(guān)于P點(diǎn)對(duì)稱
,
x0=
x+a
2
y0=
y
2

y
2
=(
x+a
2
)2,即y=
1
2
(x+a)2

(2)由
y=x2
y=
1
2
(x+a)2
消去y得x2-2ax-a2=0
又因?yàn)閮汕相交于B、C兩點(diǎn),
∴△=4a2-4(-a2)=8a2>0,∴a≠0
設(shè)B(x1,y1)、C(x2,y2
x1+x2=2a,x1x2=-a2
∵ AB⊥AC∴kABkAC=-1,即
y1
x1-a
y2
x21-a
=-1
y1y2+x1x2-a(x1+x2)+a2=0
y1y2=
x
2
1
x
2
2
=(-a2)2=0∴a4-a2-2a2+a2=0
解得a=±
2
或a=0(舍去)
∴當(dāng)AB⊥AC時(shí),a的值為±
2
點(diǎn)評(píng):本題考查圓錐曲線的綜合問題,本題解題的關(guān)鍵是先求出滿足條件的軌跡,在利用方程聯(lián)立,在聯(lián)立方程時(shí)注意判斷式與根與系數(shù)的關(guān)系的作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y=2x2+1上的動(dòng)點(diǎn),定點(diǎn)A(0,-1),點(diǎn)M分
PA
所成的比為2,則點(diǎn)M的軌跡方程為( 。
A、y=6x2-
1
3
B、x=6y2-
1
3
C、y=3x2+
1
3
D、y=-3x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y=
1
2
x2
上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是(6,
17
2
)
,則|PA|+|PM|的最小值是(  )
A、8
B、
19
2
C、10
D、
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y=
1
4
x2上的動(dòng)點(diǎn)
,點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是(2,0),則|PA|+|PM|的最小值是
5
-1
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:錦州二模 題型:單選題

已知P為拋物線y=
1
2
x2
上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是(6,
17
2
)
,則|PA|+|PM|的最小值是( 。
A.8B.
19
2
C.10D.
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省畢節(jié)一中高三第四次摸底數(shù)學(xué)試卷(解析版) 題型:填空題

已知P為拋物線y=,點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是(2,0),則|PA|+|PM|的最小值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案